版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省齊市地區(qū)普高聯(lián)誼2023-2024學(xué)年數(shù)學(xué)高一上期末監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)將正確答案涂在答題卡上.)1.函數(shù)的最大值為()A. B.C. D.2.設(shè)集合,則中元素的個(gè)數(shù)為()A.0 B.2C.3 D.43.若都是銳角,且,,則的值是A. B.C. D.4.已知函數(shù)是上的偶函數(shù),且在區(qū)間上是單調(diào)遞增的,,,是銳角三角形的三個(gè)內(nèi)角,則下列不等式中一定成立的是A. B.C. D.5.已知定義域?yàn)榈暮瘮?shù)滿(mǎn)足,且,若,則()A. B.C. D.6.已知函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),則=A. B.C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.16 B.15C.18 D.178.函數(shù)(其中mR)的圖像不可能是()A. B.C. D.9.已知三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,則外接圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.下列各組函數(shù)與的圖象相同的是()A. B.C. D.11.已知,,,則下列判斷正確是()A. B.C. D.12.已知命題:“,方程有解”是真命題,則實(shí)數(shù)a的取值范圍是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫(xiě)在答題卡上.)13.已知扇形的周長(zhǎng)是2022,則扇形面積最大時(shí),扇形的圓心角的弧度數(shù)是___________.14.如圖,在四面體ABCD中,AB⊥平面BCD,△BCD是邊長(zhǎng)為6的等邊三角形.若AB=4,則四面體ABCD外接球的表面積為_(kāi)_______15.已知球有個(gè)內(nèi)接正方體,且球的表面積為,則正方體的邊長(zhǎng)為_(kāi)_________16.定義在上的偶函數(shù)滿(mǎn)足:當(dāng)時(shí),,則______三、解答題(本大題共6個(gè)小題,共70分。解答時(shí)要求寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟。)17.設(shè)是實(shí)數(shù),(1)證明:f(x)是增函數(shù);(2)試確定的值,使f(x)為奇函數(shù)18.如圖,在平面直角坐標(biāo)系中,角的始邊與軸的非負(fù)半軸重合,終邊在第二象限且與單位圓相交于點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),垂足為點(diǎn),.(1)求的值;(2)求的值.19.已知定義在上的奇函數(shù)滿(mǎn)足:①;②對(duì)任意的均有;③對(duì)任意的,,均有.(1)求的值;(2)證明在上單調(diào)遞增;(3)是否存在實(shí)數(shù),使得對(duì)任意的恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.20.從下面所給三個(gè)條件中任意選擇一個(gè),補(bǔ)充到下面橫線(xiàn)處,并解答.條件一、,;條件二、方程有兩個(gè)實(shí)數(shù)根,;條件三、,.已知函數(shù)為二次函數(shù),,,.(1)求函數(shù)的解析式;(2)若不等式對(duì)恒成立,求實(shí)數(shù)k的取值范圍.21.已知是定義在上的偶函數(shù),當(dāng)時(shí),(1)求;(2)求的解析式;(3)若,求實(shí)數(shù)a的取值范圍22.已知函數(shù)在區(qū)間上單調(diào),當(dāng)時(shí),取得最大值5,當(dāng)時(shí),取得最小值-1.(1)求的解析式(2)當(dāng)時(shí),函數(shù)有8個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)將正確答案涂在答題卡上.)1、C【解析】先利用輔助角公式化簡(jiǎn),再由正弦函數(shù)的性質(zhì)即可求解.【詳解】,所以當(dāng)時(shí),取得最大值,故選:C2、B【解析】先求出集合,再求,最后數(shù)出中元素的個(gè)數(shù)即可.【詳解】因集合,,所以,所以,則中元素的個(gè)數(shù)為2個(gè).故選:B3、A【解析】由已知得,,故選A.考點(diǎn):兩角和的正弦公式4、C【解析】因?yàn)槭卿J角的三個(gè)內(nèi)角,所以,得,兩邊同取余弦函數(shù),可得,因?yàn)樵谏蠁握{(diào)遞增,且是偶函數(shù),所以在上減函數(shù),由,可得,故選C.點(diǎn)睛:本題考查了比較大小問(wèn)題,解答中熟練推導(dǎo)抽象函數(shù)的圖象與性質(zhì),合理利用函數(shù)的單調(diào)性進(jìn)行比較大小是解答的關(guān)鍵,著重考查學(xué)生的推理與運(yùn)算能力,本題的解答中,根據(jù)銳角三角形,得出與的大小關(guān)系是解答的一個(gè)難點(diǎn).5、A【解析】根據(jù),,得到求解.【詳解】因?yàn)椋?,所以,所以,所以,所以,,故選:A6、C【解析】因?yàn)楹瘮?shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),所以,即,因此,選C.7、B【解析】由三視圖還原的幾何體如圖所示,結(jié)合長(zhǎng)方體的體積公式計(jì)算即可.【詳解】由圖可知,該幾何體是在一個(gè)長(zhǎng)方體的右上角挖去一個(gè)小長(zhǎng)方體,如圖,故該幾何體的體積為故選:B8、C【解析】對(duì)m分類(lèi)討論,利用對(duì)勾函數(shù)的單調(diào)性,逐一進(jìn)行判斷圖像即可.【詳解】易見(jiàn),①當(dāng)時(shí),圖像如A選項(xiàng);②當(dāng)時(shí),時(shí),易見(jiàn)在遞增,得在遞增;時(shí),令,得為對(duì)勾函數(shù),所以在遞增,遞減,所以根據(jù)復(fù)合函數(shù)單調(diào)性得在遞減,遞增,圖像為D;③當(dāng)時(shí),時(shí),易見(jiàn)在遞減,故在遞減;時(shí)為對(duì)勾函數(shù),所以在遞減,遞增,圖像為B.因此,圖像不可能是C.故選:C.【點(diǎn)睛】本題考查了利用對(duì)勾函數(shù)單調(diào)性來(lái)判斷函數(shù)的圖像,屬于中檔題.9、C【解析】先判斷出是直角三角形,直接求出圓心和半徑,即可求解.【詳解】因?yàn)槿齻€(gè)頂點(diǎn)的坐標(biāo)分別為,,,所以,所以,所以是直角三角形,所以的外接圓是以線(xiàn)段為直徑的圓,所以圓心坐標(biāo)為,半徑故所求圓的標(biāo)準(zhǔn)方程為故選:C10、B【解析】根據(jù)相等函數(shù)的定義即可得出結(jié)果.【詳解】若函數(shù)與的圖象相同則與表示同一個(gè)函數(shù),則與的定義域和解析式相同.A:的定義域?yàn)镽,的定義域?yàn)?,故排除A;B:,與的定義域、解析式相同,故B正確;C:的定義域?yàn)镽,的定義域?yàn)?,故排除C;D:與的解析式不相同,故排除D.故選:B11、C【解析】對(duì)數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.12、B【解析】由根的判別式列出不等關(guān)系,求出實(shí)數(shù)a的取值范圍.【詳解】“,方程有解”是真命題,故,解得:,故選:B二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫(xiě)在答題卡上.)13、2【解析】設(shè)扇形的弧長(zhǎng)為,半徑為,則,將面積最值轉(zhuǎn)化為一元二次函數(shù)的最值;【詳解】設(shè)扇形的弧長(zhǎng)為,半徑為,則,,當(dāng)時(shí),扇形面積最大時(shí),此時(shí),故答案為:14、【解析】由題設(shè)知,四面體ABCD的外接球也是與其同底等高的三棱柱的外接球,球心為上下底面中心連線(xiàn)EF的中點(diǎn),所以,所以球的半徑所以,外接球的表面積,所以答案應(yīng)填:考點(diǎn):1、空間幾何體的結(jié)構(gòu)特征;2、空間幾何體的表面積15、【解析】設(shè)正方體的棱長(zhǎng)為x,則=36π,解得x=故答案為16、12【解析】根據(jù)偶函數(shù)定義,結(jié)合時(shí)的函數(shù)解析式,代值計(jì)算即可.【詳解】因?yàn)槭嵌x在上的偶函數(shù),故可得,又當(dāng)時(shí),,故可得,綜上所述:.故答案為:.三、解答題(本大題共6個(gè)小題,共70分。解答時(shí)要求寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟。)17、(1)見(jiàn)解析(2)1【解析】(1)設(shè)x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,結(jié)合指數(shù)函數(shù)的單調(diào)性分析可得f(x1)﹣f(x2)<0,可得f(x)的單調(diào)性且與a的值無(wú)關(guān);(2)根據(jù)題意,假設(shè)f(x)是奇函數(shù),由奇函數(shù)的定義可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),對(duì)其變形,解可得a的值,即可得答案【詳解】(1)證明:設(shè)x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上為增函數(shù),則>0,>0,由x1<x2,可得﹣<0,則f(x1)﹣f(x2)<0,故f(x)為增函數(shù),與a的值無(wú)關(guān),即對(duì)于任意a,f(x)在R為增函數(shù);(2)若f(x)為奇函數(shù),且其定義域?yàn)镽,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),變形可得2a==2,解可得,a=1,即當(dāng)a=1時(shí),f(x)為奇函數(shù)【點(diǎn)睛】證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個(gè)式子符號(hào)為止);(3)定號(hào):判斷的正負(fù)(要注意說(shuō)理的充分性),必要時(shí)要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.18、(1)(2)【解析】(1)由三角函數(shù)的定義可得出的值,再結(jié)合同角三角函數(shù)的基本關(guān)系可求得的值;(2)利用誘導(dǎo)公式結(jié)合弦化切可求得結(jié)果.【小問(wèn)1詳解】解:由題意可知點(diǎn)的橫坐標(biāo)為,則,因?yàn)闉榈诙笙藿?,則,故.【小問(wèn)2詳解】解:.19、(1)0;(2)詳見(jiàn)解析;(3)存在,.【解析】(1)利用賦值法即求;(2)利用單調(diào)性的定義,由題可得,結(jié)合條件可得,即證;(3)利用賦值法可求,結(jié)合函數(shù)的單調(diào)性可把問(wèn)題轉(zhuǎn)化為,是否存在實(shí)數(shù),使得或在恒成立,然后利用參變分離法即求.【小問(wèn)1詳解】∵對(duì)任意的,,均有,令,則,∴;【小問(wèn)2詳解】,且,則又,對(duì)任意的均有,∴,∴∴函數(shù)在上單調(diào)遞增.【小問(wèn)3詳解】∵函數(shù)為奇函數(shù)且在上單調(diào)遞增,∴函數(shù)在上單調(diào)遞增,令,可得,令,可得,又,∴,又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,∴由,可得或,即是否存在實(shí)數(shù),使得或?qū)θ我獾暮愠闪?,令,則,則對(duì)于恒成立等價(jià)于在恒成立,即在恒成立,又當(dāng)時(shí),,故不存在實(shí)數(shù),使得恒成立,對(duì)于對(duì)任意的恒成立,等價(jià)于在恒成立,由,可得在恒成立,又,在上單調(diào)遞減,∴,綜上可得,存在使得對(duì)任意的恒成立.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問(wèn)的關(guān)鍵是配湊,然后利用條件可證;第三問(wèn)的關(guān)鍵是轉(zhuǎn)化為否存在實(shí)數(shù),使得或在恒成立,再利用參變分離法解決.20、(1)選擇條件一、二、三均可得(2)【解析】(1)根據(jù)二次函數(shù)的性質(zhì),無(wú)論選擇條件一、二、三均可得的對(duì)稱(chēng)軸為,進(jìn)而待定系數(shù)求解即可;(2)由題對(duì)恒成立,進(jìn)而結(jié)合基本不等式求解即可.【小問(wèn)1詳解】解:選條件一:設(shè)因?yàn)?,,所以的?duì)稱(chēng)軸為,因?yàn)?,,所以,解得,所以選條件二:設(shè)因?yàn)榉匠逃袃蓚€(gè)實(shí)數(shù)根,,所以的對(duì)稱(chēng)軸為,因?yàn)?,,所以,解得,所以選條件三:設(shè)因?yàn)?,,所以的?duì)稱(chēng)軸為,因?yàn)?,,所以,解得,所以【小?wèn)2詳解】解:對(duì)恒成立對(duì)恒成立當(dāng)且僅當(dāng)時(shí)取等號(hào),∴所求實(shí)數(shù)k的取值范圍為.21、(1)2(2)(3)【解析】(1)根據(jù)偶函數(shù)這一性質(zhì)將問(wèn)題轉(zhuǎn)化為求的值,再代入計(jì)算即可;(2)設(shè),根據(jù)偶函數(shù)這一性質(zhì),求出另一部分的解析即可;(3)由(2)可知函數(shù)的單調(diào)性,結(jié)合單調(diào)性解不等式即可.【小問(wèn)1詳解】因?yàn)槭桥己瘮?shù),所以小問(wèn)2詳解】設(shè),則,因?yàn)槭嵌x在上的偶函數(shù),所以當(dāng)時(shí),,所以(也可表示為【小問(wèn)3詳解】由及是偶函數(shù)得,由得,在上單調(diào)遞增,所以由得,,解得,即a的取值范圍是.22、(1);(2).【解析】(1)由函數(shù)的最大值和最小值求出,由周期求出ω,由特殊點(diǎn)的坐標(biāo)出φ的值,可得函數(shù)的解析式(2)等價(jià)于時(shí),方程有個(gè)不同的解.即與有個(gè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)大全人事管理篇十篇
- 《行政職業(yè)能力測(cè)驗(yàn)》2024年公務(wù)員考試尤溪縣臨考沖刺試卷含解析
- 八下期末考拔高測(cè)試卷(5)(解析版)
- 寒假自習(xí)課 25春初中道德與法治八年級(jí)下冊(cè)教學(xué)課件 第三單元 第五課 第2課時(shí) 基本政治制度
- 《皮外骨傷科病證》課件
- 鐵路線(xiàn)路設(shè)計(jì)合同三篇
- 服裝店衛(wèi)生消毒指南
- 幼兒園工作總結(jié)攜手陪伴成長(zhǎng)無(wú)憂(yōu)
- 餐飲行業(yè)助理工作總結(jié)
- 感恩父母演講稿錦集八篇
- 明細(xì)賬(三欄式)模板
- 正大天虹方矩管鍍鋅方矩管材質(zhì)書(shū)
- 2024年山東魯商集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 妊娠劇吐伴酮癥護(hù)理查房課件
- 200#溶劑油安全技術(shù)說(shuō)明書(shū)
- 單位洗車(chē)房管理制度
- 廣西壯族自治區(qū)欽州市浦北縣2022-2023學(xué)年七年級(jí)上學(xué)期期末英語(yǔ)試題
- 動(dòng)力學(xué)全套課件
- 廣東省深圳市2022-2023學(xué)年六年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)6
- 2022-2023學(xué)年北京市海淀區(qū)高一(上)期末生物試卷(附答案詳解)
- 河南省出版物經(jīng)營(yíng)許可證申請(qǐng)登記表
評(píng)論
0/150
提交評(píng)論