版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省黃岡市晉梅中學(xué)2024屆高一上數(shù)學(xué)期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.已知集合,則中元素的個數(shù)為A.1 B.2C.3 D.42.已知,,,則的邊上的高線所在的直線方程為()A. B.C. D.3.如圖,已知的直觀圖是一個直角邊長是1的等腰直角三角形,那么的面積是A. B.C.1 D.4.已知,則A.2 B.7C. D.65.下列函數(shù)中,圖象關(guān)于坐標(biāo)原點對稱的是()A.y=x B.C.y=x D.6.為了得到函數(shù)的圖像,只需將函數(shù)的圖像上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.已知,且點在線段的延長線上,,則點的坐標(biāo)為()A. B.C. D.8.已知函數(shù),則的值為A. B.C. D.9.某幾何體的三視圖如圖所示,它的體積為()A.72π B.48πC.30π D.24π10.若函數(shù)為上的奇函數(shù),則實數(shù)的值為()A. B.C.1 D.211.函數(shù)(,且)的圖象恒過定點,且點在角的終邊上,則()A. B.C. D.12.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直其中,為真命題的是A.①和② B.②和③C.③和④ D.②和④二、填空題(本大題共4小題,共20分)13.函數(shù)的定義域為______.14.不等式x2-5x+6≤0的解集為______.15.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2),則f(27)的值為____________16.已知是定義在R上的偶函數(shù),且在上單調(diào)遞減,若(且),則a的取值范圍為_____________.三、解答題(本大題共6小題,共70分)17.已知.(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)求函數(shù)在區(qū)間上的最大值和最小值.18.(1)求值:;(2)已知,化簡求值:19.已知函數(shù),函數(shù)的圖像與的圖像關(guān)于對稱.(1)求的值;(2)若函數(shù)在上有且僅有一個零點,求實數(shù)k取值范圍;(3)是否存在實數(shù)m,使得函數(shù)在上的值域為,若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.20.已知函數(shù)(1)若,求實數(shù)a值;(2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍21.設(shè)向量a=-1,2,b=(1)求a+2(2)若c=λa+μb,(3)若AB=a+b,BC=a-2b,CD22.定義在上奇函數(shù),已知當(dāng)時,求實數(shù)a的值;求在上的解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】利用交集定義先求出A∩B,由此能求出A∩B中元素的個數(shù)【詳解】∵集合∴A∩B={3},∴A∩B中元素的個數(shù)為1故選A【點睛】本題考查交集中元素個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運用2、A【解析】先計算,得到高線的斜率,又高線過點,計算得到答案.【詳解】,高線過點∴邊上的高線所在的直線方程為,即.故選【點睛】本題考查了高線的計算,利用斜率相乘為是解題的關(guān)鍵.3、D【解析】根據(jù)斜二測畫法的基本原理,將平面直觀圖與還原為原幾何圖形,利用三角形面積公式可得結(jié)果.【詳解】平面直觀圖與其原圖形如圖,直觀圖是直角邊長為的等腰直角三角形,還原回原圖形后,邊還原為長度不變,仍為,直觀圖中的在原圖形中還原為長度,且長度為,所以原圖形的面積為,故選D.【點睛】本題主要考查直觀圖還原幾何圖形,屬于簡單題.利用斜二測畫法作直觀圖,主要注意兩點:一是與軸平行的線段仍然與與軸平行且相等;二是與軸平行的線段仍然與軸平行且長度減半.4、A【解析】先由函數(shù)解析式求出,從而,由此能求出結(jié)果【詳解】,,,故選A【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)解不等式,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.當(dāng)出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值5、B【解析】根據(jù)圖象關(guān)于坐標(biāo)原點對稱的函數(shù)是奇函數(shù),結(jié)合奇函數(shù)的性質(zhì)進行判斷即可.【詳解】因為圖象關(guān)于坐標(biāo)原點對稱的函數(shù)是奇函數(shù),所以有:A:函數(shù)y=xB:設(shè)f(x)=x3,因為C:設(shè)g(x)=x,因為g(-x)=D:因為當(dāng)x=0時,y=1,所以該函數(shù)的圖象不過原點,因此不是奇函數(shù),不符合題意,故選:B6、B【解析】利用誘導(dǎo)公式,的圖象變換規(guī)律,得出結(jié)論【詳解】解:為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點向右平移個單位長度,故選:B7、C【解析】設(shè),根據(jù)題意得出,由建立方程組求解即可.【詳解】設(shè),因為,所以即故選:C【點睛】本題主要考查了由向量共線求參數(shù),屬于基礎(chǔ)題.8、C【解析】由,故選C9、C【解析】由題意,結(jié)合圖象可得該幾何體是圓錐和半球體的組合體,根據(jù)圖中的數(shù)據(jù)即可計算出組合體的體積選出正確選項.由圖知,該幾何體是圓錐和半球體的組合體,球的半徑是3,圓錐底面圓的半徑是3,圓錐母線長為5,由圓錐的幾何特征可求得圓錐的高為4,則它的體積.考點:由三視圖求面積、體積10、A【解析】根據(jù)奇函數(shù)的性質(zhì),當(dāng)定義域中能取到零時,有,可求得答案.【詳解】函數(shù)為上的奇函數(shù),故,得,當(dāng)時,滿足,即此時為奇函數(shù),故,故選:A11、D【解析】根據(jù)對數(shù)型函數(shù)恒過定點得到定點,再根據(jù)點在角的終邊上,由三角函數(shù)的定義得,即可得到答案.【詳解】由于函數(shù)(,且)的圖象恒過定點,則,點,點在角的終邊上,.故選:D.12、D【解析】利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題二、填空題(本大題共4小題,共20分)13、且【解析】由根式函數(shù)和分式函數(shù)的定義域求解.【詳解】由,解得且,所以函數(shù)的定義域為且故答案為:且14、【解析】根據(jù)二次函數(shù)的特點即可求解.【詳解】由x2-5x+6≤0,可以看作拋物線,拋物線開口向上,與x軸的交點為,∴,即原不等式的解集為.15、3【解析】根據(jù)冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2)求出a的值,再求f(27)的值.【詳解】冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2),則8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案為3【點睛】本題主要考查冪函數(shù)的概念和解析式的求法,考查冪函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.16、【解析】根據(jù)偶函數(shù)的性質(zhì),結(jié)合絕對值的性質(zhì)、對數(shù)函數(shù)的單調(diào)性,分類討論,求出a的取值范圍.【詳解】因為已知是定義在R上的偶函數(shù),所以由,又因為上單調(diào)遞減,所以有.當(dāng)時,;當(dāng)時,.故答案為:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性解不等式,考查了對數(shù)函數(shù)的單調(diào)性,考查了數(shù)學(xué)運算能力.三、解答題(本大題共6小題,共70分)17、(1)最小正周期,單調(diào)遞減區(qū)間為;(2)最小值為0;最大值為3.【解析】(1)將函數(shù)化為,可得最小正周期為,將作為一個整體,代入正弦函數(shù)的遞減區(qū)間可得結(jié)果.(2)由,得,結(jié)合正弦函數(shù)的圖象可得所求最值試題解析:(1)∴函數(shù)的最小正周期由,,得,,∴函數(shù)的單調(diào)遞減區(qū)間為(2)∵,∴∴,∴當(dāng),即時,取得最小值為0;當(dāng),即時,取得最大值為3.18、(1);(2)【解析】(1)由指數(shù)和對數(shù)的運算公式直接化簡可得;(2)利用誘導(dǎo)公式化簡目標(biāo)式,然后分子分母同時除以,將已知代入可得.【詳解】(1)原式(2)原式,∵,∴原式19、(1)(2)或(3)存在,【解析】(1)由題意,將代入可得答案.(2)由題意即關(guān)于x的方程在上有且僅有一個實根,設(shè),作出其函數(shù)圖像,數(shù)形結(jié)合可得答案.(3)設(shè)記,則函數(shù)在上單調(diào)遞增,根據(jù)題意若存在實數(shù)m滿足條件,則a,b是方程的兩個不等正根,由二次方程的根的分布的條件可得答案.【小問1詳解】由題意,,所以【小問2詳解】由題意即關(guān)于x的方程在上有且僅有一個實根,設(shè),作出函數(shù)在上的圖像(如下圖),,由題意,直線與該圖像有且僅有一個公共點,所以實數(shù)k的取值范圍是或【小問3詳解】記,其中,在定義域上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,若存在實數(shù)m,使得的值域為,則,即a,b是方程的兩個不等正根,即a,b是的兩個不等正根,所以解得,所以實數(shù)m的取值范圍是.【點睛】思路點睛:函數(shù)的零點問題可轉(zhuǎn)化為兩個熟悉函數(shù)的圖象的交點問題來處理,而二次方程的零點問題,可結(jié)合判別式的正負、特殊點處的函數(shù)值的正負、對稱軸的位置等來處理.20、(1)(2)【解析】(1)根據(jù)即可求出實數(shù)a的值;(2)令,根據(jù)由求得的值,再根據(jù)正弦函數(shù)的性質(zhì)分析的取值情況,結(jié)合題意即可得出答案.【小問1詳解】解:,∴,∴;【小問2詳解】解:令,則,由得,∵在[-,]上是增函數(shù),在[,]上是減函數(shù),且,∴時,x有兩個值;或時,x有一個值,其它情況,x值不存在,∴時函數(shù)f(x)只有1個零點,時,,要f(x)有2個零點,有,∴時,,要f(x)有2個零點,有,綜上,f(x)有兩個零點時,a的取值范圍是.21、(1)1(2)2(3)證明見解析【解析】(1)先求a+2b=1,0,進而求a+2b;(2)列出方程組,求出λ=-1μ=3,進而求出λ+μ;(【小問1詳解】a+2b=【小問2詳解】4,-5=λ-1,2+μ1,-1,所以-λ+μ=42λ-μ=-5【小問3詳解】因為AC=AB+BC=a+b+22、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當(dāng)時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課件無法修復(fù)教學(xué)課件
- 新會區(qū)會城創(chuàng)新初級中學(xué)八年級上學(xué)期語文11月期中考試卷
- 七年級上學(xué)期語文期中考試卷-6
- 第八中學(xué)九年級上學(xué)期語文期中考試試卷
- 一年級數(shù)學(xué)(上)計算題專項練習(xí)集錦
- 貴重物品承銷協(xié)議書(2篇)
- 南京航空航天大學(xué)《程序設(shè)計實踐》2023-2024學(xué)年期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《土木工程測量》2021-2022學(xué)年第一學(xué)期期末試卷
- 南京航空航天大學(xué)《法律職業(yè)倫理》2021-2022學(xué)年期末試卷
- 肥皂泡第課時說課稿
- 2024新人教版物理八年級上冊《第三章 物態(tài)變化》大單元整體教學(xué)設(shè)計
- 同仁堂集團招聘筆試題庫2024
- 中國蠶絲綢文化智慧樹知到答案2024年浙江大學(xué)
- 換電站(充電樁)安全風(fēng)險告知
- 急性冠脈綜合征
- 冬季暖棚法施工方案
- 房建監(jiān)理大綱技術(shù)標(biāo)
- 神經(jīng)調(diào)節(jié)的基本方式 2024-2025學(xué)年高二生物同步課堂(人教版2019選擇性必修1)
- 2024年新課標(biāo)高考生物試卷(適用黑龍江、遼寧、吉林地區(qū) 真題+答案)
- 財政投資評審咨詢服務(wù)預(yù)算和結(jié)算評審項目 投標(biāo)方案(技術(shù)方案)
- 幼兒園中班語言課件:《秋天的顏色》
評論
0/150
提交評論