一次函數(shù)圖像的應(yīng)用_第1頁
一次函數(shù)圖像的應(yīng)用_第2頁
一次函數(shù)圖像的應(yīng)用_第3頁
一次函數(shù)圖像的應(yīng)用_第4頁
一次函數(shù)圖像的應(yīng)用_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

“平行四邊形的性質(zhì)”教學(xué)設(shè)計與反思教學(xué)內(nèi)容及剖析本節(jié)課是八年級上冊第三章第四節(jié)的內(nèi)容,研究的內(nèi)容包括:平行四邊形的概念,平行四邊形的對稱性,平行四邊形邊的性質(zhì)、角的性質(zhì)、對角線的性質(zhì).平行四邊形是生活中常見的四邊形,在此之前,學(xué)生已學(xué)習(xí)過平行線的性質(zhì)定理與判定定理,全等三角形的性質(zhì)與判定,中心對稱圖形,積累了研究幾何圖形性質(zhì)的基本經(jīng)驗與方法,尤其是全等三角形的相關(guān)知識,為證明邊相等與角相等提供了有力的工具,平行四邊形的性質(zhì)也是后面學(xué)習(xí)平行四邊形判定等知識的基礎(chǔ).本節(jié)課的探究過程中蘊(yùn)含著多種數(shù)學(xué)思想,探究平行四邊形性質(zhì)時,分為邊的性質(zhì)、角的性質(zhì)、對角線的性質(zhì),這就是分類討論思想;把四邊形問題轉(zhuǎn)化為三角形問題,體現(xiàn)了轉(zhuǎn)化的思想,這些思想在科學(xué)研究中都有重要作用.平行四邊形的性質(zhì)共安排了兩個課時,第一課時著重研究平行四邊形的定義、對稱性、邊的性質(zhì)與角的性質(zhì),第二課時著重研究平行四邊形對角線的性質(zhì)、平行四邊形性質(zhì)的應(yīng)用.根據(jù)上述分析,確定本節(jié)課的重點是:探索發(fā)現(xiàn)平行四邊形的中心對稱性,證明平行四邊形的性質(zhì).教學(xué)目標(biāo)及剖析1.教學(xué)目標(biāo)(1)記住平行四邊形的概念;(2)在探索平行四邊形性質(zhì)的過程中,發(fā)展學(xué)生合情推理的意識與能力;(3)通過證明平行四邊形對邊相等、對角相等、對角線互相平分,培養(yǎng)學(xué)生演繹推理的能力,學(xué)習(xí)轉(zhuǎn)化的數(shù)學(xué)思想;(4)會應(yīng)用平行四邊形的性質(zhì)解決相關(guān)問題.2.教學(xué)目標(biāo)解析新課標(biāo)指出,圖形與幾何的內(nèi)容是發(fā)展學(xué)生的空間觀念、幾何直觀及推理能力有效載體.根據(jù)新課標(biāo)要求及八年級學(xué)生的年齡特征,特制定了上述教學(xué)目標(biāo).完成第一個教學(xué)目標(biāo)的標(biāo)志是:了解平行四邊形與四邊形的區(qū)別與聯(lián)系,能從平行四邊形的定義出發(fā)推導(dǎo)平行四邊形的性質(zhì);完成第二個教學(xué)目標(biāo)的標(biāo)志是:從不同角度猜想平行四邊形的性質(zhì),通過實驗操作驗證猜想;完成第三個教學(xué)目標(biāo)的標(biāo)志是:學(xué)生通過觀察平行四邊形獲得平行四邊形的性質(zhì),能利用全等三角形知識證明平行四邊形的性質(zhì);完成第四個教學(xué)目標(biāo)的標(biāo)志是:能利用平行四邊形的性質(zhì)證明全等三角形,證明兩條線段相等、兩角相等或相關(guān)計算.教學(xué)策略剖析1.突出重點學(xué)生用刻度尺、量角器度量的方法獲得平行四邊形邊的性質(zhì)、角的性質(zhì).學(xué)生動手旋轉(zhuǎn)平行四邊形紙片,獲得對角線的性質(zhì),然后通過演繹推理確認(rèn)平行四邊形的性質(zhì).學(xué)生在實驗操作、自主探究、合作交流中掌握平行四邊形的性質(zhì),突出了教學(xué)重點.2.突破難點通過度量法和旋轉(zhuǎn)法兩種方法讓學(xué)生驗證平行四邊形對角線互相平分的性質(zhì),從而引入對角線這個元素,讓學(xué)生學(xué)會使用合情推理的方法發(fā)現(xiàn)結(jié)論,運(yùn)用演繹推理的方法證明結(jié)論,掌握研究幾何圖形的一般思路,從而突破了教學(xué)難點.3.教學(xué)方法使用探究式、啟發(fā)式教學(xué)方法,使用導(dǎo)學(xué)案、多媒體課件、實物投影等教學(xué)用具.教學(xué)過程設(shè)計教學(xué)環(huán)節(jié)一:激情導(dǎo)入,出示課題師:前面我們研究了三角形、全等三角形、等腰三角形、直角三角形,在幾何圖形里還有一類幾何圖形也很常見,即四邊形,如圖1所示的生活實物,你能看出其中的特殊四邊形嗎?圖1生:從上述實物圖中可以抽象出正方形、長方形、梯形、平行四邊形等特殊四邊形.師:上述這些四邊形之間有著怎樣的相互關(guān)系呢?師生活動:學(xué)生知道平行四邊形包含了矩形、長方形,四邊形包含了平行四邊形、梯形,教師用多媒體投影展現(xiàn)這幾種四邊形的相互關(guān)系,如圖2所示.圖2設(shè)計意圖

讓學(xué)生從生活實物中抽象出數(shù)學(xué)模型,接著讓學(xué)生理清這些特殊之間的相互關(guān)系,從而很自然地引出本節(jié)課的主要研究對象,即平行四邊形.教學(xué)環(huán)節(jié)二:回顧思考,釋讀定義師:什么樣的四邊形是平行四邊形?師生活動:學(xué)生用自己的語言表述,教師在黑板上板書,介紹如何用數(shù)學(xué)符號表示一個平行四邊形,如何讀這個符號.這樣能深化學(xué)生對平行四邊形概念的理解,培養(yǎng)學(xué)生在文字語言、符號語言、圖形語言之間相互轉(zhuǎn)化的能力.設(shè)計意圖

回顧在小學(xué)學(xué)習(xí)的平行四邊形知識,喚醒舊知,其目的在于引入平行四邊形的定義,引導(dǎo)學(xué)生觀察圖形,幫助學(xué)生理解定義.教學(xué)環(huán)節(jié)三:在動手操作中探究平行四邊形的性質(zhì)師:根據(jù)平行四邊形的定義,我們可以得到平行四邊形具有的性質(zhì)是兩組對邊互相平行,那么除了這個性質(zhì)外,平行四邊形還有其他性質(zhì)嗎?請同學(xué)們大膽提出自己的猜想,并利用手中的學(xué)具驗證你的猜想.師生活動:學(xué)生先猜想平行四邊形還具有的性質(zhì),再利用刻度尺和量角器驗證猜想,然后在小組內(nèi)分享猜想和驗證方法,最后小組代表發(fā)表自己的見解.如果學(xué)生有不一樣的猜想和驗證的方案,教師要充分肯定,然后將各種猜想整理并板書.設(shè)計意圖

在開放性的探究活動中,學(xué)生先自主探究再合作交流,既直觀感受了平行四邊形的中心對稱性,培養(yǎng)了學(xué)生的空間觀念與直觀想象,又滲透了合情推理的理論.教師環(huán)節(jié)四:通過邏輯推理證明性質(zhì)師:在動手操作中,我們發(fā)現(xiàn)了平行四邊形的性質(zhì),對邊平行且相等,對角相等,對角線互相平分,這些結(jié)論正確嗎?是否對于任意平行四邊形都成立呢?設(shè)計意圖

教師提出這個問題,讓學(xué)生明白證明平行四邊形的性質(zhì),是探究活動的自然延續(xù)和必經(jīng)路徑,感受合情推理與演繹推理的辯證關(guān)系.師:如何運(yùn)用所學(xué)知識求證平行四邊形邊的性質(zhì)、角的性質(zhì)呢?師生活動:學(xué)生先自主探究,然后在小組內(nèi)交流彼此的意見,教師要巡回指導(dǎo),適時指導(dǎo)有困難的小組.在教師的引導(dǎo)下完成畫圖、已知、求證與證明過程.預(yù)設(shè)1:如圖3①圖,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),得∠A與∠B互補(bǔ),∠B與∠C互補(bǔ),根據(jù)同角的補(bǔ)角相等,得∠A=∠C.圖3預(yù)設(shè)2:如圖3②所示,連接AC,根據(jù)兩直線平行,內(nèi)錯角相等,得∠1=∠2,∠3=∠4,因為AC公用,所以△CBA≌△ADC(ASA),根據(jù)全等三角形對應(yīng)角相等,對應(yīng)邊相等,得AB=CD,AD=CB,∠B=∠D.設(shè)計意圖

在體驗平行四邊形對角線互相平分的性質(zhì)時,學(xué)生已經(jīng)積累了活動經(jīng)驗,不難想到通過作對角線證明平行四邊形邊的性質(zhì)、角的性質(zhì),即將四邊形問題轉(zhuǎn)化為三角形問題,突破了難點.問題:如何證明平行四邊形對角線互相平分的性質(zhì)呢?預(yù)設(shè):如圖4所示,連接對角線AC,BD,相交于點O,根據(jù)平行線的性質(zhì),可得∠BAC=∠ACD,∠ABD=∠BDC,又因為平行四邊形對邊相等,得AB=CD,所以△AOB≌△COD(ASA),根據(jù)全等三角形對應(yīng)邊相等,得AO=CO,BO=DO.圖4設(shè)計意圖

在嚴(yán)密的幾何推理中培養(yǎng)學(xué)生強(qiáng)有力的邏輯論證能力,提高學(xué)生分析問題的能力、解決問題的能力,突出了本節(jié)課的重點.教學(xué)環(huán)節(jié)五:應(yīng)用性質(zhì)解決問題例題

如圖5所示,在?ABCD中,AE,CF分別平分∠BAD和∠BCD,交BD于點E,F(xiàn).(1)若∠BCF=65°,求∠ABC的度數(shù);(2)求證:AE=CF.圖5教學(xué)反思數(shù)學(xué)知識要講究自然生長的過程,學(xué)生要不斷積累數(shù)學(xué)活動經(jīng)驗,提升學(xué)科核心素養(yǎng).筆者從學(xué)生的最近發(fā)展區(qū)進(jìn)行教學(xué)設(shè)計,讓學(xué)生自主建構(gòu)數(shù)學(xué)知識,多種形式的探究活動豐富了數(shù)學(xué)活動經(jīng)驗,使學(xué)科核心素養(yǎng)貫穿了整個教學(xué)過程.幾何學(xué)習(xí)要著重培養(yǎng)學(xué)生的推理能力,學(xué)習(xí)幾何有其特殊的研究思路,筆者先讓學(xué)生觀察猜想,再驗證,最后證明,學(xué)生依次經(jīng)歷了合情推理與演繹推理,突出了幾何

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論