2023年山東省臨沂市蘭山區(qū)中考數(shù)學(xué)一模試卷-普通用卷_第1頁
2023年山東省臨沂市蘭山區(qū)中考數(shù)學(xué)一模試卷-普通用卷_第2頁
2023年山東省臨沂市蘭山區(qū)中考數(shù)學(xué)一模試卷-普通用卷_第3頁
2023年山東省臨沂市蘭山區(qū)中考數(shù)學(xué)一模試卷-普通用卷_第4頁
2023年山東省臨沂市蘭山區(qū)中考數(shù)學(xué)一模試卷-普通用卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年山東省臨沂市蘭山區(qū)中考數(shù)學(xué)一模試卷

一、選擇題(本大題共12小題,共36.0分。在每小題列出的選項中,選出符合題目的一項)

1.sin30。的值為()

2.下面的圖形是用數(shù)學(xué)家名字命名的,其中既是軸對稱圖形又是中心對稱圖形的是()

A.斐波那契螺旋線B.笛卡爾心形線

科克曲線

3.下列運算正確的是()

A.2x2+3x3=5x5B.(―2x)3=—6x3

C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2

4.如圖,斑馬線的作用是為了引導(dǎo)行人安全地通過馬路.小麗覺得行人沿垂直馬路的方向走

過斑馬線更為合理,

A.垂線段最短

B.兩點確定一條直線

C.兩點之間,線段最短

D.過直線外一點有且只有一條直線與已知直線平行

5.下列圖形中,主視圖和左視圖一樣的是()

6.一個正多邊形的內(nèi)角和是900度,則這個多邊形是()

A.正六邊形B.正七邊形C.正八邊形D.正九邊形

7.不等式組的解集在數(shù)軸上可表示為()

A.-----1I-LI1A

-5-4-3-2-1012

B.1------1,,11-------------------1>-

-5-4-3-2-1012

C????)

-5-4-3-2-1012

u.?111Al___________?)

-5-4-3-2-1012

8.某廠職工2020年的人均收入約為12000元,預(yù)計2022年的人均收入約為14520元,則人

均收入的年平均增長率為()

A.1%B.1.21%C.10%D.12.1%

9.費爾茲獎是國際上享有崇高聲譽的一個數(shù)學(xué)獎項,每四年評選一次,主要授予年輕的數(shù)

學(xué)家.下面的數(shù)據(jù)是部分獲獎?wù)攉@獎時的年齡(單位:歲):29,32,33,35,35,40,則這

組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()

A.35,35B.34,33C.34,35D.35,34

10.如圖,在△ABC中,AB=AC,以點8為圓心,適當(dāng)長為半徑畫

弧,交B4于點M,交BC于點N,分別以點M、N為圓心,大于^MN的

長為半徑畫弧,兩弧在-4BC的內(nèi)部相交于點P,畫射線BP,交4C于

點。,若4D=BD,則44的度數(shù)是()

A.36°

B.54°

C.72°

D.108°

11.如圖,以邊長為2的等邊△ABC頂點4為圓心、一定的長為半徑

畫弧,恰好與BC邊相切,分別交4B,4C于。,E,則圖中陰影部分

的面積是()

A"-*

B.2c-兀

「(6-TT)>/--3

J-3-

D.CY

12.已知二次函數(shù)y=a(x-1)2-a?羊0),當(dāng)-1WXW4時,y的最小值為-4,則a的值

為()

A.黑4B.?或-之C.-g或4D.-:或4

二、填空題(本大題共4小題,共12.0分)

13.分解因式:3ax2-3ay2=.

14.一個不透明的箱子中有5個紅球和若干個黃球,除顏色外無其它差別.若任意摸出一個

球,摸出紅球的概率堤,則這個箱子中黃球的個數(shù)為一個.

15.如圖,在中,4ACB=90。,過點B作BD1CB,

垂足為B,月上。=3,連接CD,與4B相交于點M,過點M作

MN1CB,垂足為N.若AC=2,則MN的長為.

16.如圖,在正方形4BCD中,點E是邊BC上的一點,點F在邊CD的延長

線上,且BE=。尸,連接EF交邊4。于點G.過點4作4V1EF,垂足為點M,

交邊CD于點N.若BE=5,CN=8,則線段AB的長為.

三、解答題(本大題共7小題,共56.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

17.(本小題8.0分)

⑴計算:

(2)解分式方程:言=:

18.(本小題8.0分)

為減少傳統(tǒng)塑料袋對生態(tài)環(huán)境的破壞,國家提倡使用可以在自然環(huán)境下(特定微生物、溫度、

濕度)較快完成降解的環(huán)保塑料袋.調(diào)查小組就某小區(qū)每戶家庭1周內(nèi)環(huán)保塑料袋的使用情況

進行了抽樣調(diào)查,使用情況為4(不使用)、B(1?3個)、C(4?6個)、。(7個及以上),以下是

根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖的一部分.

(1)本次調(diào)查的樣本容量是,請補全條形統(tǒng)計圖;

(2)已知該小區(qū)有1500戶家庭,調(diào)查小組估計:該小區(qū)1周內(nèi)使用7個及以上環(huán)保塑料袋的家

請說明理山.

某數(shù)學(xué)小組要測量學(xué)校路燈P-M-N的頂部到地面的距離,他們借助皮尺、測角儀進行測

量,測量結(jié)果如下:

測量項目測量數(shù)據(jù)

從4處測得路燈頂部P的仰角aa=58°

從。處測得路燈頂部P的仰角£0=31°

測角儀到地面的距離AB=DC=1.6m

兩次測量時測角儀之間的水平距離BC=2m

計算路燈頂部到地面的距離PE約為多少米?(結(jié)果精確到0.1米.參考數(shù)據(jù):cos31。?0.86,

tan31°?0.60,cos58°?0.53,tan58°?1.60)

20.(本小題8.0分)

如圖①和圖②,并給出的關(guān)鍵信息有:哥哥、妹妹、家、書店.哥哥妹妹同時從家外出.

(1)請根據(jù)給出的關(guān)鍵信息以及兩幅圖,用精煉的語言創(chuàng)設(shè)一個問題情境,恰好能表達(dá)圖①和

圖②中圖象對應(yīng)的函數(shù)關(guān)系.

(2)請根據(jù)(1)一種所創(chuàng)設(shè)的情境,用精煉的語言描述一下第30分鐘時,兩圖中所表達(dá)的現(xiàn)實

情境.

(3)請根據(jù)一中所創(chuàng)設(shè)的情境,第35分鐘時圖①和圖②中速度更快的是填圖①和圖②.

21.(本小題8.0分)

如圖,4B是。。的直徑,點C,點。在O。上,AC=CD,4。與BC相交于點E,點尸在BC的

延長線上,且AF=4E.

(1)求證:4F是。。的切線;

(2)若EF=6,sin4BAC=%求。。的半徑.

22.(本小題8.0分)

某山村經(jīng)過脫貧攻堅和鄉(xiāng)村振興,經(jīng)濟收入持續(xù)增長.經(jīng)統(tǒng)計,近五年該村甲農(nóng)戶年度純收入

如表所示:

年度(年)201620172018201920202021

年度純收入(萬元)1.52.54.57.511.3

若記2016年度為第1年,在直角坐標(biāo)系中用點(1,1.5),(2,2.5),(3,4.5),(4,7.5),(5,11.3)表

示近五年甲農(nóng)戶純收入的年度變化情況.如圖所示y=x+b(/c>0),y=ax2

0.5%+c(a>0),以便估算甲農(nóng)戶2021年度的純收入.

yA/萬元

1--1-------1~l—I-------1

10

9

8

7

6

5

?(X4.5)

4

3

,(2,2:5):

2

1111111111A

0123456789h/年度

(1)能否選用函數(shù)y=7(m>0)進行模擬,請說明理由;

(2)你認(rèn)為選用哪個函數(shù)模擬最合理,請說明理由;

(3)甲農(nóng)戶準(zhǔn)備在2021年底購買一臺價值16萬元的農(nóng)機設(shè)備,根據(jù)(2)中你選擇的函數(shù)表達(dá)式,

預(yù)測甲農(nóng)戶2021年度的純收入能否滿足購買農(nóng)機設(shè)備的資金需求.

23.(本小題8.0分)

問題解決:如圖1,在矩形4BCD中,點E,F分別在4B,BC邊上,DE=AF,DE_L4產(chǎn)于點G.

(1)求證:四邊形4BCD是正方形:

(2)延長CB到點使得B4=4E,判斷AAHF的形狀,并說明理由.

(3)類比遷移:如圖2,在菱形ABCD中,點E,F分別在BC邊上,DE與4F相交于點G,

DE=AF,Z.AED=60°,AE=6,BF=2,求DE的長.

答案和解析

1.【答案】c

【解析】解:s譏30。=:.

故選C.

直接根據(jù)特殊角的三角函數(shù)值進行計算即可.

本題考查的是特殊角的三角函數(shù)值,熟記各特殊角度的三角函數(shù)值是解答此題的關(guān)鍵.

2.【答案】。

【解析】解:4不是軸對稱圖形,也不是中心對稱圖形,故此選項不合題意;

員是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;

C.不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;

。.既是軸對稱圖形又是中心對稱圖形,故此選項符合題意;

故選:D.

根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就

叫做中心對稱圖形,這個點叫做對稱中心;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠

互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.

此題主要考查了軸對稱圖形和中心對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊

后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原來的圖形重合.

3.【答案】。

【解析】解:4選項,2M與37不是同類項,不能合并,故該選項計算錯誤,不符合題意;

B選項,原式=-8/,故該選項計算錯誤,不符合題意;

C選項,原式=/+2xy+y2,故該選項計算錯誤,不符合題意;

。選項,原式=22-(3x)2=4-9/,故該選項計算正確,符合題意;

故選:D.

根據(jù)合并同類項,積的乘方,完全平方公式,平方差公式計算即可.

本題考查了合并同類項,積的乘方,完全平方公式,平方差公式,注意完全平方公式展開有三項.

4.【答案】A

【解析】解:4直線外一點到這條直線上各點的連線中,垂線段最短,故4符合題意;

8、兩點確定一條直線,是直線的性質(zhì),故8不符合題意;

C、連接兩點的所有線中,線段最短,故C不符合題意;

。、平行線的一條性質(zhì),故。不符合題意.

故選:A.

根據(jù)垂線的性質(zhì)進行解答即可.

本題考查垂線的性質(zhì),關(guān)鍵是掌握垂線的兩條性質(zhì),明白垂線段最短.

5.【答案】D

【解析】

【分析】

本題考查簡單幾何體的三視圖,掌握各種幾何體的三視圖的形狀是正確判斷的關(guān)鍵.

根據(jù)各個幾何體的主視圖和左視圖進行判定即可.

【解答】

解:4主視圖和左視圖不相同,故本選項不合題意;

B.主視圖和左視圖不相同,故本選項不合題意;

C.主視圖和左視圖不相同,故本選項不合題意;

。.主視圖和左視圖相同,故本選項符合題意,

故選:D.

6.【答案】B

【解析】解:設(shè)這個正多邊形的邊數(shù)為n,

則有(n-2)x180°=900°,

解得:n=7,

???這個正多邊形的邊數(shù)為7.

故選8.

根據(jù)多邊形的內(nèi)角和定理和多邊形的內(nèi)角和等于900。,列出方程,解出即可.

本題主要考查多邊形的內(nèi)角和定理,解題的關(guān)鍵是根據(jù)已知等量關(guān)系列出方程從而解決問題.

7.【答案】A

【解析】解:解不等式x+l<0得,x<-l,

解不等式—2xW6得,x>—3,

不等式組的解集為:-3Wx<-l,在數(shù)軸上表示為:

_1____I___I______I___?___1_1_____>

-5-4-3-2-1012

故選:A.

解出兩個不等式,再表示出不等式組的解集,在數(shù)軸上正確表示出來即可選出正確答案.

本題考查一元一次不等式組的解法以及數(shù)軸上表示解集,熟練掌握一元一次不等式組的解法是解

題的關(guān)鍵.

8.【答案】C

【解析】解:設(shè)人均收入的年平均增長率為X,

則12000(1+x)2=14520,

解得x=0.1(其中x=-2.1<0舍去),

故增長率為10%,

故選:C.

利用一元二次方程的應(yīng)用中的增長率問題設(shè)元列方程求解即可.

本題考查一元二次方程的應(yīng)用中的增長率問題,須注意實際情況中數(shù)據(jù)的取舍,正確的列式計算

是解題的關(guān)鍵.

9.【答案】D

【解析】

【分析】

根據(jù)眾數(shù)和中位數(shù)的定義即可得正確選項.

【解答】

解:???35出現(xiàn)的次數(shù)最多,

二這組數(shù)據(jù)的眾數(shù)是35,

將這組數(shù)據(jù)按從小到大排列,排在中間的兩個數(shù)分別為33,35,故這組數(shù)據(jù)的中位數(shù)為史羅=34.

故選:D.

【點評】

本題主要考查眾數(shù)和中位數(shù),掌握求眾數(shù)和中位數(shù)的方法是解題關(guān)鍵.

10.【答案】A

【解析】解:由題意可得BP為N48C的角平分線,

???Z.ABD=乙CBD,

vAD=BD,

:.Z.A=Z.ABD,

???Z.A—Z,ABD=Z.CBD,

,Z-ABC=

vAB=ACf

???Z.ABC=Z-C=2z>4,

??.Z.A+/.ABC+NC=+2/.A+2/.A=180°,

解得乙4=36°.

故選:A,

由題意可得8P為乙48c的角平分線,則乙18。=4CBO,由4。=80,可得乙4=乙480,即可得

^ABC=2^Af由=可得=再結(jié)合三角形內(nèi)角和定理可列出關(guān)于乙4的方程,

即可得出答案.

本題考查作圖-基本作圖、等腰三角形的性質(zhì),熟練掌握等腰三角形的性質(zhì)是解答本題的關(guān)鍵.

11.【答案】D

【解析】解:過點力作4F1BC,交BC于點、F.

在等邊△ABC中,AB=AC=BC=2,^BAC=60°,

??.CF=BF=1.

在尸中,AF=VAB2-BF2=

S陰影=S"BC—S扇形ADE

1「60兀x(O)2

=2X2X^-一磊二

=C后,

故選:D.

作AF1BC,由勾股定理求出AF,然后根據(jù)S版=S-BC-S癡如DE得出答案.

本題主要考查了等邊三角形的性質(zhì),求扇形面積,理解切線的性質(zhì),將陰影部分的面積轉(zhuǎn)化為三

角形的面積一扇形的面積是解題的關(guān)鍵.

12.【答案】D

【解析】解:y=a(%—l)2—a的對稱軸為直線久=1,

頂點坐標(biāo)為(1,-a),

當(dāng)Q>0時,在一函數(shù)有最小值一Q,

???y的最小值為一4,

???—a=—4,

???a=4;

當(dāng)a<0時,在一當(dāng)%=4時,函數(shù)有最小值,

9a—Q=-4,

解得a=_:;

綜上所述:a的值為4或-去

故選:D.

分兩種情況討論:當(dāng)a>0時,一。=一4,解得Q=4;當(dāng)aVO時,iS—1<x<4,9a-a=-4,

解得a=T

本題考查二次函數(shù)的圖象及性質(zhì),熟練掌握二次函數(shù)的圖象及性質(zhì),根據(jù)二次函數(shù)的性質(zhì),在指

定的范圍內(nèi)準(zhǔn)確求出函數(shù)的最小值是解題的關(guān)鍵.

13.【答案】3a(x+y)(x-y)

【解析】解:原式=3a(--y2)

=3a(%+y)(x—y).

故答案為:3a(x+y)(x—y).

先提公因式,再運用平方差公式.

本題考查了多項式的因式分解,掌握提公因式法和平方差公式是解決本題的關(guān)鍵.

14.【答案】15

【解析】解:設(shè)箱子中黃球的個數(shù)為%個,根據(jù)題意可得:

5_1

5+x=4*

解得:x=15,

故答案為:15.

直接利用概率公式得出鬻然進而得出答案.

小球總個數(shù)r4

此題主要考查了概率公式,正確掌握概率求法是解題關(guān)鍵.

15.【答案】|

【解析】解:v^ACB=90°,BD1BC,MN工CB,

^AC//MN//BD9CNM=LCBD,

???乙MAC=乙MBD,/-MCA=乙MDB=乙CMN,

/.△MAC-MBD,ACMNYDB,

tMC_AC_2MN_CM

,?麗―麗-3'BD='CD"

CM2

'CD=5?

.MN_2

----=-?

3----5

MN=

故答案為:

由44cB=90。,BD1BC,MN1CB^AC//MN//BD,從而得△“4。一“8。,4CMNYDB,由

相似比,得到MN的長度.

本題主要考查了三角形相似的判定和性質(zhì),旨在判斷學(xué)生是否對兩個常見的相似模型“4型相似”

和“8字型相似”能夠靈活應(yīng)用.這里的易錯點是在得到第一對三角形的相似比時,學(xué)生容易直接

使用在第二對相似三角形中,導(dǎo)致失分.

16.【答案】20

【解析】解:如圖,連接4及AF9EN,

??,四邊形4BCD為正方形,

?.AB=AD,BC=CD,^ABE=Z.BCD=Z.ADF=90°,

在△力BE和△4OF中,

(AB=AD

\^ABE=Z.ADF,

[BE=DF

尸(SAS),

:.Z.BAE=Z.DAF,AE=AF9

???Z.EAF=90°,

??.△EAF為等腰直角三角形,

-ANLEF,

???EM=FM,Z,EAM=AFAM=45°,

??.△AEM^^AFM(S4S),△EMNWAFMN(SAS),

???EN=FN,

設(shè)DN=x,

vBE=DF=5,CN=8,

???CD=CN+DN=x+8,

EN=FN=DN+DF=x+S,CE=BC-BE=CD-BE=x+8-5=x

在RCZkECN中,由勾股定理可得:

CN24-CE2=EN2,

即82+。+3)2=(%+5)2,

解得:x=12,

/.DN=12,AD=BC=BE+CE=5+%+3=20?

:.AB=AD=20.

故答案為:20.

連接4E,AF,EN,由正方形的性質(zhì)可得4B=4D,BC=CD,/.ABE=/.BCD=Z.ADF=90°,

可證得AABE三△ADF(SAS),可得=ZDAF,AE=AF,從而可得4EAF=90°,根據(jù)等腰

三角形三線合一可得點M為EF中點,由4VJ.EF可證得AAEM三AaFM(SAS),△EM/V=A

FMN(SAS),可得EN=FN,設(shè)DN=x,則EN=FN=x+5,CE=x+3,由勾股定理解得x=12,

可得DN=12,AD=BC=20.

本題考查正方形的性質(zhì),勾股定理,等腰三角形的性質(zhì),全等三角形的判定與性質(zhì)等知識點,解

題的關(guān)鍵是正確作出輔助線,構(gòu)建全等三角形解決問題.

17.【答案】解:(1)原式=2C-2-(V3-l)=2V-3-2-q+l=V3-l;

(2)—=-

V7X+3x

方程兩邊同乘以xQ+3),得5x=x+3,

移項,得5x-%=3,

合并同類項,得4x=3,

系數(shù)化為1,得%=:,

4

檢驗:當(dāng)%=3時,%(%+3)。0,

.??%='是原分式方程的解.

4

【解析】(1)先化簡二次根式和計算負(fù)整數(shù)指數(shù)暴,再根據(jù)實數(shù)的混合計算法則求解即可;

(2)先把分式方程化為整式方程求解,再檢驗即可.

本題主要考查了實數(shù)的混合計算,解分式方程,化簡二次根式,負(fù)整數(shù)指數(shù)幕,熟知相關(guān)計算法

則是解題的關(guān)鍵.

18.【答案】解:(1)100;

C類戶數(shù)為100x25%=25(戶),B類戶數(shù)為100-20-25-15=40(戶),

補全條形統(tǒng)計圖為:

?家圈/戶

(2)調(diào)查小組的估計合理.

理由如下:

因為1500x爵=225(戶),

所以根據(jù)該小區(qū)1周內(nèi)使用7個及以上環(huán)保塑料袋的家庭約有225戶.

【解析】

【分析】

本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩

形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也

考查了樣本估計總體.

⑴用4類戶數(shù)除以它所占的百分比得到樣本容量:20+20%=100,所以本次調(diào)查的樣本容量為

100;C類戶數(shù)為100x25%=25(戶),B類戶數(shù)為100-20-25-15=40(戶),然后補全條形

統(tǒng)計圖;

(2)利用樣本估計作圖,由于1500x益=225(戶),則可估計該小區(qū)1周內(nèi)使用7個及以上環(huán)保塑

料袋的家庭約有225戶,從而可判斷調(diào)查小組的估計合理.

【解答】

解:

(1)本次調(diào)查的樣本容量是:20+20好=100,

所以本次調(diào)查的樣本容量為100;

條形統(tǒng)計圖見答案;

故答案為:100.

(2)見答案.

19.【答案】解:如圖:延長交PE于點F,

NEBC

則。F1PE,AD=BC=2m,AB=CD=EF=1.6m,

設(shè)4F=X771,

:.DF=AF+AD=(^x+2)m,

在RtAPFA中,APAF=58°,

???PF=AF-tan58°?1.6x(m),

在RtAPD尸中,/.PDF=31°,

.PF1.6xn-

tan31=而=布"°6,

**x—1.2,

經(jīng)檢驗:x=1.2是原方程的根,

PF=1.6x=1.92(m),

PE=PF+EF=1.92+1.6?3.5(m),

???路燈頂部到地面的距離PE約為3.5米.

【解析】延長ZM,交PE于點凡則DF1PE,設(shè)=先在RtZ^PFA中,利用銳角三角函數(shù)

的定義求出PF的長,然后在RtAPOF中,利用銳角三角函數(shù)的定義列出關(guān)于x的方程,進行計算

即可解答.

本題考查了解直角三角形的應(yīng)用-仰角俯角問題,根據(jù)題目的已知條件并結(jié)合圖形添加適當(dāng)?shù)妮o

助線是解題的關(guān)鍵.

20.【答案】解:(1)哥哥和妹妹以相同的速度同時從家外出,20分鐘后到達(dá)距離家900米的書店.哥

哥到達(dá)書店后,立即以原來的速度返回家中(如圖①),妹妹留在書店看了10分鐘書后加快了速度

返回家中(如圖②).

(2)第30分鐘,哥哥在返回家的途中(或在離家450米處等),

妹妹即將開始返程回家(或仍在離家900米處等),

(3)根據(jù)圖象可以得出:第35分鐘時圖①和圖②中速度更快的是圖②.

【解析】(1)根據(jù)給出的關(guān)鍵信息以及兩幅圖,用語言創(chuàng)設(shè)一個問題情境即可;

(2)根據(jù)(1)一種所創(chuàng)設(shè)的情境,進行回答即可;

(3)根據(jù)圖象回答即可.

本題考查了函數(shù)的圖形,解決本題的關(guān)鍵是讀懂圖意,明確橫軸與縱軸的意義.

21.【答案】(1)證明:???AE=2F,

:.Z.F=Z.CEA,

v4B是。。的直徑,

??.Z.ACB=90°,

???Z.CAE+Z.CEA=90°,

-AC=CD,

???Z-CAE=乙D=乙B,

:.Z.B+Z.F=90°,

???FA1AB,

48是。0的直徑,

???4F與。。相切于點4

(2)解:vAE=AF,Z.ACB=90°,

1

/.CF=CE=;EF=3,

vACAB=Z.CEA,

4

:.sin^CAB=sinZ-CEA=

,A£_4

,?族=丁

4

/.71C=pF,

???(4E)2+32=AE2,

AE—5,

:.AC=4,

??,sinZ-CAB==7,

AB5

4

?-.AB=IAB,

???42+QB)2="B2,

.20

:.ABn=",

即。。的半徑為3

【解析】(1)山AE=AF,AB是。。的直徑,可以得出Na4E+4CEA=90。,再根據(jù)AC=CD,得

出NB+NF=90°,從而得出4FZB=90。即可;

(2)由銳角三角函數(shù)的定義得出筮=%求出ZE=5,4C=4,則可求出4B的長.

本題考查了切線的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),等腰三角形的判定與性質(zhì)等知

識,熟練掌握切線的性質(zhì)是解題的關(guān)鍵.

22.【答案】解:(1)不能選用函數(shù)y=:(m>0)進行模擬,理由如下:

,:1x1.5=1.5,2x2.5=5,...

:?1.5。5

,不能選用函數(shù)y=7(^>0)進行模擬;

(2)選用y=Q/—0.5x+c(a>0),理由如下:

由(1)可知不能選用函數(shù)y=9(m>0),由(1,1.5),(2,2.5),(3,4.5),(4,7.5),(5,11.3)可知x每增

大1個單位,y的變化不均勻,則不能選用函數(shù)丫=x+b(/c>0),

故只能選用函數(shù)y=ax2-0.5%+c(a>0)進行模擬;

(3)由點(1,1.5),(225)在y=ax2-0.5%+c(a>0)上

(

m1.5=a-0.5+c,

(2.5=4a-1+c

解得:,

lc=1.5

??.y=0.5%2—0.5%+1.5

當(dāng)%=6時,y=0.5x36-0.5x6+1.5=16.5,

???16.5>16,

,甲農(nóng)戶2021年度的純收入滿足購買農(nóng)機設(shè)備的資金需求.

【解析】(1)根據(jù)m=xy是否為定值即可判斷和說明理由;

(2)通過點的變化可知不是一次函數(shù),由(1)可知不是反比例函數(shù),則可判斷選用二次函數(shù)模擬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論