2024屆北京市第一五九中學中考四模數學試題含解析_第1頁
2024屆北京市第一五九中學中考四模數學試題含解析_第2頁
2024屆北京市第一五九中學中考四模數學試題含解析_第3頁
2024屆北京市第一五九中學中考四模數學試題含解析_第4頁
2024屆北京市第一五九中學中考四模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年北京市第一五九中學中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.△ABC在網絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.2.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE3.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數為()A.100° B.110° C.120° D.130°4.若在同一直角坐標系中,正比例函數y=k1x與反比例函數y=的圖象無交點,則有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<05.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經過點P;②調整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對6.把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數為()A.15 B.17 C.19 D.247.已知一組數據,,,,的平均數是2,方差是,那么另一組數據,,,,,的平均數和方差分別是.A. B. C. D.8.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.89.在,,則的值為()A. B. C. D.10.下列說法正確的是()A.﹣3是相反數 B.3與﹣3互為相反數C.3與互為相反數 D.3與﹣互為相反數二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把△ABC繞點C順時針旋轉得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數是_____°.12.因式分解:2m2﹣8n2=.13.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當點沿半圓從點運動至點時,點運動的路徑長是________.14.以矩形ABCD兩條對角線的交點O為坐標原點,以平行于兩邊的方向為坐標軸,建立如圖所示的平面直角坐標系,BE⊥AC,垂足為E.若雙曲線y=32x15.若式子有意義,則x的取值范圍是______.16.如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以OB為邊在y軸右側作等邊三角形OBC,將點C向左平移,使其對應點C′恰好落在直線AB上,則點C′的坐標為.17.對于函數,若x>2,則y______3(填“>”或“<”).三、解答題(共7小題,滿分69分)18.(10分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.19.(5分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.20.(8分)已知A=ab(a-b)-ba(a-b).化簡A;如果a、b21.(10分)在平面直角坐標系中,點,,將直線平移與雙曲線在第一象限的圖象交于、兩點.(1)如圖1,將繞逆時針旋轉得與對應,與對應),在圖1中畫出旋轉后的圖形并直接寫出、坐標;(2)若,①如圖2,當時,求的值;②如圖3,作軸于點,軸于點,直線與雙曲線有唯一公共點時,的值為.22.(10分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.23.(12分)在平面直角坐標系中,一次函數的圖象與反比例函數(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數和反比例函數解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據圖象,直接寫出不等式的解集.24.(14分)如圖,在梯形中,,,,,點為邊上一動點,作⊥,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.(1)當圓過點時,求圓的半徑;(2)分別聯(lián)結和,當時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點,試通過計算說明線段和的比值為定值,并求出次定值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.2、B【解題分析】

先證明四邊形DBCE為平行四邊形,再根據矩形的判定進行解答.【題目詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【題目點撥】本題考查了平行四邊形的性質與判定,矩形的判定等,熟練掌握相關的判定定理與性質定理是解題的關鍵.3、B【解題分析】

根據同弧所對的圓周角是圓心角度數的一半即可解題.【題目詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數的一半),故選B.【題目點撥】本題考查了圓周角和圓心角的關系,屬于簡單題,熟悉概念是解題關鍵.4、D【解題分析】當k1,k2同號時,正比例函數y=k1x與反比例函數y=的圖象有交點;當k1,k2異號時,正比例函數y=k1x與反比例函數y=的圖象無交點,即可得當k1k2<0時,正比例函數y=k1x與反比例函數y=的圖象無交點,故選D.5、A【解題分析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【題目詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【題目點撥】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.6、D【解題分析】

由圖可知:第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,第④個圖案有三角形1+3+4+4=12,…第n個圖案有三角形4(n﹣1)個(n>1時),由此得出規(guī)律解決問題.【題目詳解】解:解:∵第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,…∴第n個圖案有三角形4(n﹣1)個(n>1時),則第⑦個圖中三角形的個數是4×(7﹣1)=24個,故選D.【題目點撥】本題考查了規(guī)律型:圖形的變化類,根據給定圖形中三角形的個數,找出an=4(n﹣1)是解題的關鍵.7、D【解題分析】

根據數據的變化和其平均數及方差的變化規(guī)律求得新數據的平均數及方差即可.【題目詳解】解:∵數據x1,x2,x3,x4,x5的平均數是2,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數是3×2-2=4;∵數據x1,x2,x3,x4,x5的方差為,∴數據3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【題目點撥】本題考查了方差的知識,說明了當數據都加上一個數(或減去一個數)時,平均數也加或減這個數,方差不變,即數據的波動情況不變;當數據都乘以一個數(或除以一個數)時,平均數也乘以或除以這個數,方差變?yōu)檫@個數的平方倍.8、B【解題分析】

根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【題目詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【題目點撥】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵9、A【解題分析】

本題可以利用銳角三角函數的定義求解即可.【題目詳解】解:tanA=,

∵AC=2BC,

∴tanA=.

故選:A.【題目點撥】本題考查了正切函數的概念,掌握直角三角形中角的對邊與鄰邊的比是關鍵.10、B【解題分析】

符號不同,絕對值相等的兩個數互為相反數,可據此來判斷各選項是否正確.【題目詳解】A、3和-3互為相反數,錯誤;B、3與-3互為相反數,正確;C、3與互為倒數,錯誤;D、3與-互為負倒數,錯誤;故選B.【題目點撥】此題考查相反數問題,正確理解相反數的定義是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】

由旋轉的性質可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質可求∠ACA'=1°=∠B′CB.【題目詳解】解:∵把△ABC繞點C順時針旋轉得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【題目點撥】本題考查了旋轉的性質,熟練運用旋轉的性質是本題的關鍵.12、2(m+2n)(m﹣2n).【解題分析】試題分析:根據因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數的最大公約數2,進一步發(fā)現提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.13、π【解題分析】

取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據弧長公式即可得軌跡長.【題目詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【題目點撥】本題考查了點的軌跡與等腰三角形的性質.解決動點問題的關鍵是在運動中,把握不變的等量關系(或函數關系),通過固定的等量關系(或函數關系),解決動點的軌跡或坐標問題.14、1【解題分析】

由雙曲線y=32x(x>0)經過點D知S△ODF=12k=34,由矩形性質知S△AOB=2S△ODF【題目詳解】如圖,∵雙曲線y=32x∴S△ODF=12k=3則S△AOB=2S△ODF=32,即12OA?BE=∴OA?BE=1,∵四邊形ABCD是矩形,∴OA=OB,∴OB?BE=1,故答案為:1.【題目點撥】本題主要考查反比例函數圖象上的點的坐標特征,解題的關鍵是掌握反比例函數系數k的幾何意義及矩形的性質.15、x>.【解題分析】解:依題意得:2x+3>1.解得x>.故答案為x>.16、(﹣2,2)【解題分析】試題分析:∵直線y=2x+4與y軸交于B點,∴x=0時,得y=4,∴B(0,4).∵以OB為邊在y軸右側作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點縱坐標為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標為(﹣2,2).考點:2.一次函數圖象上點的坐標特征;2.等邊三角形的性質;3.坐標與圖形變化-平移.17、<【解題分析】

根據反比例函數的性質即可解答.【題目詳解】當x=2時,,∵k=6時,∴y隨x的增大而減小∴x>2時,y<3故答案為:<【題目點撥】此題主要考查了反比例函數的性質,解題的關鍵在于利用反比例函數圖象上點的坐標特點判斷函數值的取值范圍.三、解答題(共7小題,滿分69分)18、(1);(2).【解題分析】

(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據一共出現的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【題目詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【題目點撥】此題考查的是用列表法或樹狀圖法求概率與不等式的性質.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.19、(1)證明見解析(2)【解題分析】

(1)連接OC,根據垂直定義和切線性質定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【題目詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【題目點撥】本題考核知識點:切線性質,銳角三角函數的應用.解題關鍵點:由全等三角形性質得到線段相等,根據直角三角形性質得到相應等式.20、(1)a+bab【解題分析】

(1)先通分,再進行同分母的減法運算,然后約分得到原式=a+b(2)利用根與系數的關系得到a+b=【題目詳解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=【題目點撥】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=021、(1)作圖見解析,,;(2)①k=6;②.【解題分析】

(1)根據題意,畫出對應的圖形,根據旋轉的性質可得,,從而求出點E、F的坐標;(2)過點作軸于,過點作軸于,過點作于,根據相似三角形的判定證出,列出比例式,設,根據反比例函數解析式可得(Ⅰ);①根據等角對等邊可得,可列方程(Ⅱ),然后聯(lián)立方程即可求出點D的坐標,從而求出k的值;②用m、n表示出點M、N的坐標即可求出直線MN的解析式,利于點D和點C的坐標即可求出反比例函數的解析式,聯(lián)立兩個解析式,令△=0即可求出m的值,從而求出k的值.【題目詳解】解:(1)點,,,,如圖1,由旋轉知,,,,點在軸正半軸上,點在軸負半軸上,,;(2)過點作軸于,過點作軸于,過點作于,,,,,,,,,,,,,,,,,設,,,,點,在雙曲線上,,(Ⅰ)①,,,,(Ⅱ),聯(lián)立(Ⅰ)(Ⅱ)解得:,,;②如圖3,,,,,,,直線的解析式為(Ⅲ),雙曲線(Ⅳ),聯(lián)立(Ⅲ)(Ⅳ)得:,即:,△,直線與雙曲線有唯一公共點,△,△,(舍或,,.故答案為:.【題目點撥】此題考查的是反比例函數與一次函數的綜合大題,掌握利用待定系數法求反比例函數解析式、一次函數解析式、旋轉的性質、相似三角形的判定及性質是解決此題的關鍵.22、(1)證明見解析;(1);(3)1.【解題分析】

(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據OG∥BE得出=,即可計算出AD.【題目詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【題目點撥】本題考查了相似三角形與全等三角形的判定與性質與切線的性質,解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質與切線的性質.23、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解題分析】

(1)將點A坐標代入解析式,可求解析式;(2)一次函數和反比例函數解析式組成方程組,求出點B坐標,即可求△ABF的面積;(3)直接根據圖象可得.【題目詳解】(1)∵一次函數y=﹣x+b的圖象與反比例函數y=(k≠0)圖象交于A(﹣3,2)、B兩點,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函數解析式y(tǒng)=﹣,反比例函數解析式y(tǒng)=.(2)根據題意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由圖象可得:x<﹣2或0<x<4【題目點撥】本題考查了反比例函數圖象與一次函數圖象的交點問題,待定系數法求解析式,熟練運用函數圖象解決問題是本題的關鍵.24、(1)x=1(2)(1)【解題分析】

(1)作AM⊥BC、連接AP,由等腰梯形性質知BM=4、AM=1,據

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論