




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
CambridgeCentreforRiskStudies
abrdn
USINGREALWORLD
SCENARIOSTOIMPROVE
THERESILIENCEOF
PRIVATEINVESTMENT
PORTFOLIOS
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
2
UsingRealWorldScenarios
toImprovetheResilienceofPrivateInvestment
Portfolios
"Historicalperformanceisnoguaranteeoffutureresults":Althoughanalysisofexperiencedatahelpsinvestmentmanagersassesshowtheirportfoliosandassetswouldhaveperformedagainstpastcrises,thenextcrisiswillbedifferent.Improvinginvestmentstrategiesagainstfuturerisksrequirestestsagainstscenariosoflikely-andunlikely-eventsacrossawiderangeofpotentialcauses.Real-worldscenariosbuildhypothesesaboutplausibleextremeeventsofthenear-termfuture,basedonscientificevidence,andusesthemtoassesshowtheycouldaffectinvestments.Usingreal-worldscenariosimprovestheresilienceofinvestmentstrategiesandprovidesbetterassessmentofriskpremiumsinassetpricing.
1ExecutiveSummary
Aftertheglobalfinancialcrisisof2008/9(GFC),privatemarketshavecontinuedtoexpandatatremendouspaceasinvestorsareincreasinglyattractedtotheprivateassetclassbyarangeofbenefitssuchasbetterreturnscomparedtotraditionalassetclasses,alowercorrelationwithotherassetsandeffectiveportfoliodiversification.Spanningprivateequity,infrastructure,naturalresourcesrealestateandprivatecredit,privatemarketshavewitnessedaperiodofphenomenalgrowth.Investorsarecommittingtoprivatemarketsintheirsearchforstableincomeand/orsuperiorreturns.
Thedynamicnatureofprivateinvestments,however,employsmultipleleverstodrivevalue,leadingtoasignificantlevelofidiosyncrasy,whichischallengingtomeasure.Lookingatthecorporatespace,thisidiosyncrasymanifestsitselfincorporatestrategy,M&Astrategy,productdevelopments,supplychain,technologyutilisationandfinancialleveragewhichareallbeingoptimisedtomaximisevalueinthemediumtolongterm.
AftertheGFCtherehasbeenareappraisalofinvestmentmodellingmethodsandanalyticalapproaches,particularlyinpublicmarkets.Thecrisisraiseddoubtthattheframeworkformeasuringriskinpublicmarketswasappropriateforportfolioscomprisingacombinationofpublicplusasignificantproportionofprivatemarketassets.Themaincriticismisthatreturnsinprivateassetsaremorevulnerabletolowprobability,highimpacttailrisksandarethereforeunlikelytobenormallydistributed.Thishasmadeitproblematictoapplytraditionalsystematicriskornon-diversifiableriskmeasurestoprivateportfoliosduetolimitedhistoricaldata.
Furthermore,itisdifficulttoformrobustconclusionsabouthowassetsperformunderdifferentmacroeconomicscenarios.
Toprovideasolution,thisprojectisanendeavourtoincorporatescenarioapproacheswiththelatestdevelopmentsinenterpriseriskmodellingtechniquesdevelopedbytheCambridgeCentreforRiskStudies(CCRS).Theyhaveresearchedmarketandmacroriskstomeasureportfolioexposurestoriskfactorsthatcanimpacttheindividualconstituentsofaninvestmentportfolio,oftendescribedasidiosyncraticrisks.
Anenterprisevaluationmodelframeworkhasbeendevelopedwhereconstituentscanbeshockedwhencalibratedtoascenariotomaketheframeworksystematicacrossmacroandmarketfactorsand,moresignificantly,theidiosyncraticcontributions.UtilisingamethodologycombiningCambridgescenariosanddigitaltwinsrepresentingportfoliocompanies,theportfolio-wideimpactofasuiteofscenarioscanbeassessedbymeasuringtheextentofpossiblelossesinfirms’discountedcashflow,wherethedeltabetweenthebaselineandmodelledcashflow,acrossallscenarios,iscalledEarningsValueatRisk.Thisenablesinvestmentmanagerstomeasureandprioritisetheriskexposureanddecidetheoptimalcourseofactionstomitigateandremediatetheriskontheirownportfolios.
Thispaperservesasanarchetypalmethodologythatprovidesabasisforfurtherresearchonintegratingamulti-dimensionalriskmanagementparadigmintotheinvestmentdecision-makingprocessforprivatemarketsassets.Ascenariostresstestingapproachcanprovideacomplementarytoolthathelpsassessingandconfrontingtheseuncertaintiesandthereforecontributingtowardstheviabilityofaportfolio.
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
3
2Introduction
TheconceptspresentedinthisreportcovertheongoingresearchjointlyconductedbytheCambridgeCentreforRiskStudies(CCRS)andabrdnonimprovingtheresilienceofprivateinvestmentportfolios.Thebodyofliteratureaddressingriskmodellingofprivatemarketassetsisrelativelyscarcecomparedtothatofpublicmarketassets.Asaresult,assetstradedinprivatemarketshavebeentreatedinterchangeablywiththoselistedinpublicmarkets.Inthisprocess,therehasbeenlittlefundamentaldifferencebetweenadjustmentsmadetoaddresstheinherentcharacteristicsofprivatemarketassetsandriskstheunderlyinginvestmentscarryandthosemadetopubliccapitalmarketassets.Thisreporthighlightsthepotentialofusingrealworldscenariosasacomplementaryapproachtoclassicalefficientmarkethypothesisanddynamicequilibriummodels.
Wedefineprivatemarketportfoliosasthoseconsistingofunlistedorprivatelyheldassetclassessuchasprivateequity,infrastructure,realestate,privatecreditandnaturalresources.Investmentsinprivatemarketshavehistoricallybeentaintedwiththeperceptionthattheseassetshavenotalwaysbeeneasilyaccessible.Asreturn-starvedinvestorsarelookingforopportunitiestoimprovetheirportfolioreturnsinthelowyieldenvironment,however,privatemarketassetsareincreasinglyviewedasanessentialandcorepartoftheirassetallocationandoverallinvestmentstrategies,addingsignificantvaluetotheirportfoliosbyofferingbetterreturnpotentialsthanconventionalinvestmentoptions,aswellasdiversificationandvolatilitymitigationbenefits.
Modellingandassessingtherisksofprivatemarketinvestmentportfoliosisachallenging,especiallyregardingeventsinthetailofdistributions.TheCambridgeTaxonomyofBusinessRisksidentifiesbroadcategoriesofcausalthreatsthatcouldpotentiallycauseasocialoreconomiccrisis.1Thiscould,inturn,havethepotentialtoimpactthereturnsofinvestmentportfoliosandindividualassets.Usingrealworldscenariostoquantifytheriskassociatedwithaninvestmentportfolioisaneconomicmethodofcapturingsomeofthetailriskthataportfolioisexposedto.Wetakedatafrom
1CCRS(2019).
2See,forexampleTheEconomist,July18,2009.
historicaleventstoparametrisethemodelallowingforarobustmethodofriskanalysis.Thismethodologycanbenefitanassetmanagerbyhighlightingtheeventsthatposeaseriousthreattotheirportfolio,aswellasoutliningthekeydriversbehindthethreat.Thistypeofmodellingisusefulforhighimpact,lowprobabilityeventsthatconstitutetailrisks,whicharenoteasytodetectormeasurewithinthetraditionalriskmodellingframeworkasthesemodelsassumenormalityasadefault.
Thisreportpresentstheunderlyingconceptsofusingrealworldscenariosasacomplementtostandardriskmanagementpracticesforstresstestingprivatemarketinvestmentportfolios.Thekeytopicsinclude:
?Reviewoftraditionalriskmodels
?Limitationsoftraditionalriskmodels
?Taxonomyofportfoliorisks
?Scenariostosupportstresstestingincludingtheirdevelopmentandapplicationmethodology
?Scenarioapplicationstoprivatemarketportfolios.
3PortfolioTheorySinceGFC
TheGFCandthefailureofmanyinvestmentportfolioriskmanagementtoolstoanticipateandmanagethemeltdownhasledtoageneralreappraisalofinvestmentmodelsandanalyticalapproaches.
Thecreditcrunchandassociatedeconomiccrisisthatfollowedgeneratedalargevolumeofcommentaryandinterpretation,andconsiderablequestioningofconventionaleconomictheory.2Macroeconomicmodelsreliedonbyseveralcentralbanks,knownas‘dynamicstochasticgeneralequilibrium’(DSGE)models,failedtoanticipatethedownturn.Amongotherinitiatives,ittriggeredamovementto‘ReinventEconomics’.
Thecritiqueofclassicaleconomictheoryquestionsthebasicassumptions,principallythe‘EfficientMarketHypothesis(EMH)’and‘dynamicequilibrium’.Suchmodelsarefelttobevaluableformanypartsofeconomicdecision-makingbutpooratunderstandingfinancialcrises.Somecommentatorshavesuggestedthattraditionaleconomics,developedduringtheearly19thCentury,isbasedonapoorparadigm,thermodynamics,inwhichsteady-statesareeventuallyachieved.3AnumberofauthorshighlightthefallacyoftheEfficientMarket
3SeeBeinhocker(2007),pp21-43‘TraditionalEconomics:AWorldinEquilibrium’.
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
4
Hypothesisinhavingnoroomforassetpricebubblesorbusts–thetheoryinsiststhatmarketsarealwayscorrectlypricedandthatbubbleshavetobenothingmorethanmarketsrespondingtochangingfundamentals.4
3.1FatCatastropheTails
Theissueforseveralanalystsisthatthetailsofthedistributionsarefatterthanmightbeexpectedfromtraditionalanalysistechniques.Asearlyasthe1960sthemathematicsofMandelbrotdemonstratedthatdistributionsofmarketpricefluctuationshavemuchfattertailsthantraditionallyexpectedbuttraditionaleconomistshavetendedtopursuemathematicalcharacterizationsbasedon‘randomwalks’(i.e.information-freerandomnesswithtrends).5Theseleadtounderestimationsofthelikelihoodofmajormarketmovements.TheeconomistGeneStanleyofBostonUniversitydemonstratedthatamarketdipoftheseverityofthe1987‘BlackMonday’hasalikelihoodof10-148intraditional‘randomwalk’mathematics.6RobertMerton,oneoftheNobel-prizewinningarchitectsoftheBlack-Scholesmodel,isquotedin1998onthedayafterLong-TermCapitalManagementlost$4.4Bnassaying“accordingtoourmodelsthisjustcouldnothappen”.7Asimilarquoteisattributedtoanunnamedchieffinancialofficerinoneoftheworld’slargesthedgefunds,afterithadsufferedhugelossesin2008assayingithadsufferedadverse“25-standarddeviationevents,severaldaysinarow”accordingtotheirmodels.8
3.2Theyweren’tdesignedasCatastropheModels
Tobefair,themodelsthatweresoheavilycriticisedwerenotdesignedtoestimatecatastropherisk.TheDSGEmodelsusedbycentralbanksweredevelopedtoinformeconomicandmonetarypolicyandhaveperformedwellduringperiodsoffinancialstability.Assetpricingmodelsingeneralhavebeengreataidstoinvestmentmanagementandhavethemselves“createdmarkets”.Economicmodelsbasedontheoreticalprincipleswereusedfromthe1970sonwardsas‘engines’todrivemarketchangeratherthanasobjective‘cameras’tosimplyreproduceempiricalfacts,9andassuchthesemodelsalteredthe
4Cooper(2008)isonekeycriticoftheefficientmarkethypothesis,inhisbookTheOriginofFinancialCrises:CentralBanks,CreditBubblesandEfficientMarket
Fallacy.
5SeeMandelbrot(2008)andBeinhocker(2007)p179-181.
6PresentationbyH.EugeneStanleyataconferenceonTheEconomyasanEvolvingComplexSystem,SantaFe
Institute,Nov16,2001inBeinhocker(2007)p180.
7‘HowtheEggheadsCracked’byM.Lewis,NewYorkTimesMagazine,Jan24,1999pp24-77.
8Cooper(2008)p10.
9MacKenzie(2006):AnEngine,NotaCamera:HowFinancialModelsShapeMarkets.
marketstheyrepresentedthrough,forexample,enablingfuturesandderivativestrading,whichtodayaremajorcomponentsofthefinancialmarket.
FinancialassetpricingmodelshavebeenunderscrutinysincetheBlack-Scholes-MertonmodelwaswidelyblamedforthefailureofLongTermCapitalManagementin1998.10Thesemodelshaveevenbeenblamedforthebehaviourofentiremarkets–whenmanytradersareusingsimilarmodels,theytendtomakesimilardecisions.Theclaimisthatthishasincreasedthecoordinationofactivity(‘flockbehaviour’)andthecorrelationofassetpricesacrossmarkets,assetclasses,andgeographiessignificantlyoverthepasttwodecades.
Bankrunsarecitedassimilarexamplesofsharedbeliefsfuelling‘mobpsychology’inthegeneralpopulation.TheincreasedspeedofinformationflowsthroughthemarketprovidedbytheInternet,andtheubiquityofmodelledviewsofpricingaresignificantfactorsinincreasedcorrelationandthespeedwithwhichmarketcrashescannowoccur.Theconceptofcoordinatedactionsbyindividualsfacilitatedbyextraneousfactorswhicharenoteasytoexplainis(rathercharmingly)referredtobyfinancialanalystsas‘sunspots’.11
3.3AlternativeEconomicTheories
Alternativeeconomictheorieshavebeenbeingproposed,includingMandelbrot’s‘TurbulentMarketswithMemory’,12Minsky’s‘FinancialInstabilityHypothesis’,13andtheemergingfieldof‘ComplexityEconomics’.14Moderntheoristssuggestthat‘punctuatedequilibrium’orgrowthcyclesofboom-and-bust,maybeinherentpropertiesofahealthygrowingeconomy.Intheseviewsofeconomics,thecharacteristicsofthefinancialsystemitselfiswhatdefinesthefrequencyandseverityofcrises:i.e.financialcatastrophesarisefrom‘endogenous’characteristicsofthecomplexsystem,aswellas,andperhapsevenmorethan,‘exogenous’externalshocks.
3.4ComplexityEconomics
Thesealternativetheoriesproposeconsideringeconomicactivityasacomplexadaptivesystem.Some
10SeeMacKenzie(2006)pp218-242foranexaminationoftheLTCMcasestudy.
11Allen&Gale(2008)‘Theroleofsunspots’p76in
UnderstandingFinancialCrises.
12Mandelbrot&Hudson(2008).
13Minskyfirstrefutedtheefficientmarkethypothesiswithhis‘FinancialInstabilityHypothesis’in1936,whichis
adaptedbyCooper(2008)asabasisforimprovingcentralbankpolicy.
14OutlinedbySornette(2003)inWhyStockMarkets
Crash:CriticalEventsinComplexFinancialSystems.
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
5
evensuggestthatabetterconceptualmodelforeconomicactivitymightbebiologicalevolution.15Theseideasareembracedundertheterm‘ComplexityEconomics’orasanewmanifestationofalongstandingbranchoftheorytermed‘BehaviouralEconomics’.16Theeconomyisseenasacomplexsystem,andamarketcrashisacatastrophicfailure.
Evenwithoutanunderlyingtheoreticalbasis,theplausibilityandimpactofextremeshockscanbeassessedthroughscenariosthatincorporatereal-worldcharacteristicsofcausalprocessesandinterconnectivity.
4ThePastisNoGuidetotheFuture
Statisticaldataofpastyieldsandassetperformanceareusedtocalibratemanyofthetraditionalmodelsofinvestmentriskpremiums.Reliabletradingdataisavailabledatingbacktothe1970s-around50years.Thatperiodhasseenmanyextremeevents,crises,externalities,andblips.Itcouldbeassumedthatthemostextremeeventsobservedinthatperiodrepresentthe‘1-in-50’annualextreme.Butwhataboutthe‘1-in-100’–canwejustextrapolateusinganassumptionaboutthedistributions?Philosophicallywedonotbelievethatthepast50yearscontainsenoughextremeexamplestofullypopulatethetailriskfromstatisticalexperience.Thereisliteratureconcernedwithhowtomakeallowancefor‘strategicsurprise’andnewtypesofcrisesthathavenotbeenseenbefore,referencing‘BlackSwans’;17‘DragonKings’,18‘UnknownUnknowns’,19and‘Non-ModelledRisks’.20Manyorganizationsexpendsignificantresourcestomonitor‘emergingrisks’andthethreatstheyface,asawayoftryingtoanticipatepotentialnewthreatsthatcouldtriggerdevaluationevents.Ourapproachistoconsiderauniverseofpotentialthreats,whichallowsforcompletelyunforeseensurprise,butbyexhaustiveanalysisandresearchtocreateauseabletaxonomyofcausalissuesthathaveplausiblecapabilityofcausingeventsinthenextseveralyears.Eachofthesearethentestedwiththedevelopmentofascenariothatenablesaportfoliostresstestthatillustratesthosethreats.
5LimitationsofTraditionalRiskModels
Whenanalysingportfolios,differentmodellingtechniquescanbeemployedtoprovideaviewofrisksassociatedwithit.Commonlyadoptedriskmanagementtechniquesaredesignedtoevaluatea
15Beinhocker(2007)apes(asitwere)Darwin’sTheOriginofSpeciesintitlinghisbookTheOriginofWealth.
16TheEconomistdescribesthestateoftheartofapplyingpsychologystudiestoeconomicsundertheumbrellaofBehavioralEconomics,inFinancialEconomics:
EfficiencyandBeyond’,p73-74,July18,2009.
portionoftherisk,butnotallofit.Forassetmanagers,adelicatebalancemustbestruckbetweenensuringthataninvestmentisprofitablewhileaccountingforenoughrisktoensurethatasufficientbuffercanbeputinplacetoprotectthem.Typically,astatisticalapproachistakentoassesstheriskassociatedwithaninvestment,forexamplethelikelihoodofaninvestmentfailing.Bysettingarangeoflikelihoodsinwhichassetmanagersareconfidentininvesting,thisbuildsariskappetite.Howeverstatisticalviewsmaycontaininsufficientinformationaboutthepotentialforfailure.Whenamajordevaluationeventoccurs,itcanhavefarreachingeffects,astailriskshavepotentialtobebeyondanassetmanager’sriskappetite.
Asdescribedabove,theGFCisanexampleofsuchahighly-correlatedcatastrophiceventoutsideofstatisticalbounds.Atthetimevalue-at-riskmodelscaptured99%oftheriskforabundleofsecurities.Itdidnottakeintoaccountthe1-in-100(year)eventwhichinthiscasewasamassdefaultonmortgagesintheUShousingmarket.Fromamodellingperspective,the1-in-100eventmayhavebeenoverlookedwhenthesecuritiesweretraded,withpeopleunder-pricingthetailrisks.Investorsandregulatorshavelearntsomelessonsandnowapplybetterriskmanagementprinciples.Forexample,therearenowstrictrulesinplacetolimitspeculativeinvestmentsanddangerouscorporateculturedrivingaggressiverisk-taking.Theserulesprovideagreaterlevelofmarketoversightandtighterrestrictionsondisclosurepolicies.
Manymodellingmethodsarenotdesignedtomodelextremetailrisks.Macroeconomicgeneralizedequilibriummodelscanbestressedwithmoderatevariations,butcanfailtoresolvewhenthevariationsexceedthehistoricalrangeofobservedvariation,particularlyinthecaseofhighlyimprobablebuthighlyimpactfulaccidentsornaturalphenomena,i.e.acatastrophe.
Inacontextofprivatemarkets,investorshadinvestedinavarietyofunconventionalassetclassesthattheythoughtofferedthemdiversificationfromequities,priortotheGFC.Inthisevent,theyweredisappointedtodiscoverduringthe2008–09equitybearmarket,thisdiversificationwaslargelyillusory.Forthatreason,webelievethattheassetclassesthatprovidethemostrobustdiversificationfromequitiesarethosewhoseunderlyingcashflowsareinsensitive
17Taleb(2010).
18Sornette(2009).
19Rumsfeld(2002).
20ABI(2014).
UsingRealWorldScenariostoImprovetheResilienceofInvestmentPortfolios
6
tothebusinesscycle.Forexample,inaprivatemarketuniverse,infrastructureisanassetclassthatcanbeeconomicallyinsensitivethuslesscyclical.Manyunderlyinginfrastructureassetssuchasenergygeneratingfarms,schools,hospitalsandutilitieslikeelectricitygridshavecashflowsthataredrivenbylong-termgovernment-backedcontractsorsubsidies,furtherlinkedwithinflation.
MorerecentlyduringtheCOVID-19marketturmoilin2020,lookingatsocialinfrastructureforexample,wecanseehowwellitfaredwhenequitiesandrealestatewereexperiencinglargepricedeclines.Intermsofareturnsperspective,mostinvestorsrelyexclusivelyonassetsthatarelistedonpublicmarkets,buthigherreturnsareoftenavailablefromunlistedorprivatelyheldassetslikeprivateequity,infrastructure,directproperty,privatecreditandnaturalresources.Privateassetstypicallyofferhigherreturnsthantheirlistedversionsbecauseinvestorsreceivean‘illiquiditypremium’incompensationforlosingtheabilitytoreleasetheircapitalatashortnotice.Thispremiumtypicallyadds2–4%toreturns,dependingontheassetclass.Strongdemandforprivatemarketsinrecentyearsindicatesthatthispremiummaybenowatthelowendoftherange,however,giventhelowexpectedreturnselsewhereoveralonghorizon.
Investorssometimesmistakenlybelievethatbecauseprivateassetsareilliquidthismeansthattheygetnocashreturnintheshortterm.Infact,manyprivateassetsofferastableincomereturnduringtheperiodtheyareheld.Oneofthebiggestchallengesforinvestorsinprivateassetsisidentifyingandaccessingthebestinvestmentopportunitiesgivenitsreturnandriskappetite.Thedifferenceinperformancebetweentopandbottom-quartilemanagersismoresignificantforprivateassetclassesthanitisforlistedmarkets.Hence,managerselectioniscriticalasthefundswiththebesttrackrecordscanoftenbehardtoaccess.
Intermsofmarkettransparencyoftheprivatemarkets,therehasbeengrowingtransparencyinprivateassets,assuggestedbyHudsonandDeSilva(2016),makingthemmoreviableduetodiversificationeffects,yield,andrisktolerance.Ingeneral,thetrendisthatbetterinformationcomingoutofprivatemarketsisallowingmarketstobemoreliquid.However,theproblemremainsthattherearestillgapsinthereportingperiodsasprivateassetstakeadiscreteapproachtopublishinginformation.Unliketheusualmethodsofmodellingrisksforpublicassets,theyacknowledgethattheseprivateassetsaremorevulnerabletolowprobability,highimpacttail
21Rebonato(2010)
risks.Thissuggeststhatadifferentriskmodellingapproachisrequiredforthesetypesofportfolios.
6TaxonomyofPortfolioRisks
Singlevariablestresstests(e.g.asuddenreductionininterestrate)canbeappliedtoaportfoliotoensurethataninvestmentisrobustenoughtoweatherashock.Howeverreal-worldshocksrarelyaffectasinglevariable.Theunderlyingcauseofthereductionininterestratewillalsoaffectothereconomicvariables,anddependingonthecause,canhavequitediverseeffects.Inordertoprepareforthetailrisksitisnecessarytotakecombinationsofextremeevents,whichcanhavemultiplestressvariablesaffectinganinvestmentportfolio.Theinterrelationshipbetweentheimpactfulvariableschangeswiththenatureoftheunderlyingrealworldcauseoftheshock.
Rebonatoexploresthedifficultyofstresstestingrisksandarguesfor‘coherence’instresstestvariablesconsistentwithusingrealandhypotheticalscenarios.21Event-treeapproachesofrandomlystressingmultiplevariablesbecomerapidlyunfeasiblewithmorethanahandfulofvariables,tobranchouteveryeventthatcanaffectaportfolio,especiallyatthesametime.Insteadwefocusonspecificeventsmodelledafterrealworldscenarios.
Amoregroundedapproachtakesanunderstandingoftheuniverseofpotentialexogenousandendogenousshocksandabroadevaluationofthecausaldriversoftheseshocks.Theunderlyingcausesofsystemicriskswehavepreviouslytermed‘econotagions’.
CCRShasreviewedthelandscapeofrisktoattempttoidentifythebroadcategoriesofcausalthreatsthatcouldpotentiallycauseasocialoreconomiccrisiswiththepotentialtoimpactthereturnsofinvestmentportfoliosandindividualassets.
Thisstudy,ongoingsince2014,hasinvolvedmultipleresearchapproachesandhasresultedintwopublications.Identifyingthreatsinvolvedanextensivehistoricalreviewofcausesofsocialandeconomicdisruptionoverthepastthousandyears.Thiswasaugmentedwithareviewofcatastrophecataloguesanddatabases,aprecedentreview,astudyofcounter-factualtheories,andapeerreviewprocess.
Figure1:Cambridgetaxonomyofbusinessrisks,v2.0.22.
22CCRS(2019
Figure1showstheCambridgeTaxonomyofBusinessRisks.Itisorganisedinahierarchyofcausalsimilarity,into6PrimaryClasses,37Families,and170RiskTypes.Thestructurecanbefurthersubdividedintomoregranulartypesasrequired.Thisstructureprovidesauniversefromwhichtoselectscenariosofinteresttostressaportfolio.
Forexample,thegeopoliticalclassofscenariosconsiderstheriskassociatedwithnotonlytherelationsofacompanytoagoverningbody,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中海材料管理制度
- 臨時單位管理制度
- 臨時拍賣管理制度
- 事務所安全管理制度
- 房屋市政工程生產(chǎn)安全重大事故隱患排查表
- 基于深度學習的路牙機車牌識別算法研究與系統(tǒng)開發(fā)
- 基于混合深度學習模型的短期風電功率概率預測方法研究
- 智能網(wǎng)聯(lián)環(huán)境下混合交通流微觀模型構(gòu)建與仿真分析
- 激光選區(qū)熔化成形鈦-鋁異質(zhì)材料的界面組織與力學性能研究
- 輸尿管休息對成人輸尿管重建手術(shù)療效的影響-傾向性評分匹配研究
- 《美國太空優(yōu)先事項框架》解讀分析
- 《非物質(zhì)文化遺產(chǎn)數(shù)字化保護 數(shù)字資源采集和著錄 第9部分:傳統(tǒng)技藝》
- 中藥鑒定綜合技能-礦物類中藥鑒定
- 2022-2023學年福建省福州市鼓樓區(qū)數(shù)學六年級第二學期期末教學質(zhì)量檢測試題含解析
- 語言學概論復習(全)
- 公務員考試理論與實踐(山東聯(lián)盟)知到章節(jié)答案智慧樹2023年山東財經(jīng)大學
- 工藝安全檢查表
- 洗染行業(yè)消費糾紛處理指南
- GB/T 19995.1-2005天然材料體育場地使用要求及檢驗方法第1部分:足球場地天然草面層
- 全民經(jīng)紀人協(xié)議書
- 護理學課件-鋪床法
評論
0/150
提交評論