版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省廈門市金尚中學2024屆中考一模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算的結(jié)果為()A.2 B.1 C.0 D.﹣12.若關于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y34.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個5.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形6.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形7.如圖,菱形ABCD的對角線交于點O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm8.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+319.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>210.的值是A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.不等式組的解集為____.12.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.13.如圖,在中國象棋的殘局上建立平面直角坐標系,如果“相”和“兵”的坐標分別是(3,-1)和(-3,1),那么“卒”的坐標為_____.
14.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。15.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.16.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.17.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.三、解答題(共7小題,滿分69分)18.(10分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.特例探索(1)如圖1,當∠ABE=45°,c=時,a=,b=;如圖2,當∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關系,用等式表示出來,請利用圖1證明你發(fā)現(xiàn)的關系式;拓展應用(1)如圖4,在□ABCD中,點E,F(xiàn),G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.19.(5分)先化簡,再求值:(+)÷,其中x=20.(8分)如圖,在邊長為1個單位長度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.21.(10分)如圖,在平行四邊形ABCD中,連接AC,做△ABC的外接圓⊙O,延長EC交⊙O于點D,連接BD、AD,BC與AD交于點F分,∠ABC=∠ADB。(1)求證:AE是⊙O的切線;(2)若AE=12,CD=10,求⊙O的半徑。22.(10分)如圖,以O為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標.23.(12分)先化簡,再求值:,其中a滿足a2+2a﹣1=1.24.(14分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
按照分式運算規(guī)則運算即可,注意結(jié)果的化簡.【題目詳解】解:原式=,故選擇B.【題目點撥】本題考查了分式的運算規(guī)則.2、C【解題分析】試題分析:由題意可得根的判別式,即可得到關于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.3、D【解題分析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【題目詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點所在的象限是解答此題的關鍵.4、C【解題分析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【題目點撥】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.5、A【解題分析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【題目詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【題目點撥】本題考查了命題與定理的知識,解題的關鍵是能夠了解矩形和菱形的判定定理,難度不大.6、B【解題分析】
如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【題目詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【題目點撥】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊成比例,對應角相等,兩個條件必須同時具備.7、B【解題分析】試題解析:∵菱形ABCD的對角線根據(jù)勾股定理,設菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.8、C【解題分析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【題目詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【題目點撥】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.9、D【解題分析】
A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;
B選項:因為-2<0,圖象在第二、四象限,故本選項正確;
C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;
D選項:當x>0時,y<0,故本選項錯誤.
故選D.10、D【解題分析】
根據(jù)特殊角三角函數(shù)值,可得答案.【題目詳解】解:,故選:D.【題目點撥】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、x>1【解題分析】
分別解出兩不等式的解集再求其公共解.【題目詳解】由①得:x>1
由②得:x>∴不等式組的解集是x>1.【題目點撥】求不等式的解集須遵循以下原則:同大取較大,同小取較?。〈蟠笮≈虚g找,大大小小解不了.12、.【解題分析】
延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【題目詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【題目點撥】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關鍵是確定出點P的位置.13、(-2,-2)【解題分析】
先根據(jù)“相”和“兵”的坐標確定原點位置,然后建立坐標系,進而可得“卒”的坐標.【題目詳解】“卒”的坐標為(﹣2,﹣2),故答案是:(﹣2,﹣2).【題目點撥】考查了坐標確定位置,關鍵是正確確定原點位置.14、4:7或2:5【解題分析】
根據(jù)E在CD上和CD的延長線上,運用相似三角形分類討論即可.【題目詳解】解:當E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當當E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【題目點撥】本題以矩形為載體,考查了相似三角形的性質(zhì),解題的關鍵在于根據(jù)圖形分類討論,即數(shù)形結(jié)合的靈活應用.15、1.【解題分析】
連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數(shù).【題目詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【題目點撥】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理.16、1+【解題分析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構(gòu)建出與已知和所求相關的直角三角形是解答此題的關鍵.17、3或1【解題分析】
由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【題目點撥】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應用等知識.注意掌握分類討論思想的應用是解此題的關鍵.三、解答題(共7小題,滿分69分)18、(1)2,2;2,2;(2)+=5;(1)AF=2.【解題分析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如圖2,連接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案為2,2,2,2;(2)猜想:a2+b2=5c2,如圖1,連接EF,設∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如圖2,連接AC,EF交于H,AC與BE交于點Q,設BE與AF的交點為P,∵點E、G分別是AD,CD的中點,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F(xiàn)分別是AD,BC的中點,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四邊形ABFE是平行四邊形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分別是△AFE的中線,由(2)的結(jié)論得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考點:相似形綜合題.19、-【解題分析】
先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.【題目詳解】原式=[+]÷=[-+]÷=·=,當x=時,原式==-.【題目點撥】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.20、(1)見解析(2)見解析(3)9【解題分析】試題分析:(1)將△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1,如圖所示;(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據(jù)題意畫出圖形,△A1B1C1為所求三角形;(2)根據(jù)題意畫出圖形,△A2B2C2為所求三角形.考點:1.作圖-位似變換,2.作圖-平移變換21、(1)證明見解析;(2).【解題分析】
(1)作輔助線,先根據(jù)垂徑定理得:OA⊥BC,再證明OA⊥AE,則AE是⊙O的切線;(2)連接OC,證明△ACE∽△DAE,得,計算CE的長,設⊙O的半徑為r,根據(jù)勾股定理得:r2=62+(r-2)2,解出可得結(jié)論.【題目詳解】(1)證明:連接OA,交BC于G,∵∠ABC=∠ADB.∠ABC=∠ADE,∴∠ADB=∠ADE,∴,∴OA⊥BC,∵四邊形ABCE是平行四邊形,∴AE∥BC,∴OA⊥AE,∴AE是⊙O的切線;(2)連接OC,∵AB=AC=CE,∴∠CAE=∠E,∵四邊形ABCE是平行四邊形,∴BC∥AE,∠ABC=∠E,∴∠ADC=∠ABC=∠E,∴△ACE∽△DAE,,∵AE=12,CD=10,∴AE2=DE?CE,144=(10+CE)CE,解得:CE=8或-18(舍),∴AC=CE=8,∴Rt△AGC中,AG==2,設⊙O的半徑為r,由勾股定理得:r2=62+(r-2)2,r=,則⊙O的半徑是.【題目點撥】此題考查了垂徑定理,圓周角定理,相似三角形的判定與性質(zhì),切線的判定與性質(zhì),熟練掌握各自的判定與性質(zhì)是解本題的關鍵.22、(1)60°;(2)見解析;(3)對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解題分析】
(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.
(2)由(1)的結(jié)論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關系.
(3)此題應考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼化學傷的急救和治療原則
- 腦血栓的溶栓治療
- 肛腸疾病的中醫(yī)治療
- 課件字體標準教學課件
- 高三化學一輪復習 離子反應 課件
- 1.1.1原子結(jié)構(gòu)和原子光譜 課件 高二上學期化學人教版(2019)選擇性必修2
- 日光性皮膚病
- 初中生網(wǎng)絡安全教育
- 物業(yè)主管半年述職報告
- 踩高蹺教案反思大班
- (完整PPT)半導體物理與器件物理課件
- ASTM B366 B366M-20 工廠制造的變形鎳和鎳合金配件標準規(guī)范
- 汽車維修工時收費標準二類企業(yè)
- JIS G4304-2021 熱軋不銹鋼板材、薄板材和帶材
- 鋼筋直螺紋連接課件PPT
- 2022年中級經(jīng)濟師-人力資源管理專業(yè)押題模擬試卷3套及答案解析
- 小學綜合實踐活動《認識校園植物》優(yōu)秀PPT課件
- XRD在薄膜材料研究中應用
- 變壓器專業(yè)詞匯英文翻譯
- 藏傳佛教英文詞匯
- 鐵路雜費收費項目和標準
評論
0/150
提交評論