




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省南昌市青山湖區(qū)達(dá)標(biāo)名校2024學(xué)年中考數(shù)學(xué)全真模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,D是等邊△ABC邊AD上的一點(diǎn),且AD:DB=1:2,現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、F分別在AC、BC上,則CE:CF=()A. B. C. D.2.-4的絕對(duì)值是()A.4 B. C.-4 D.3.下列分式中,最簡(jiǎn)分式是()A. B. C. D.4.cos30°的相反數(shù)是()A. B. C. D.5.已知點(diǎn),與點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是()A. B. C. D.6.要使分式有意義,則x的取值應(yīng)滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個(gè)正根是()A.的長(zhǎng) B.的長(zhǎng) C.的長(zhǎng) D.的長(zhǎng)8.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個(gè)蓄水池以固定的流量注水,下面能大致表示水的最大深度與時(shí)間之間的關(guān)系的圖象是()A. B. C. D.9.下面四個(gè)立體圖形,從正面、左面、上面對(duì)空都不可能看到長(zhǎng)方形的是A. B. C. D.10.在下列四個(gè)汽車標(biāo)志圖案中,能用平移變換來(lái)分析其形成過(guò)程的圖案是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.21世紀(jì)納米技術(shù)將被廣泛應(yīng)用.納米是長(zhǎng)度的度量單位,1納米=0.000000001米,則12納米用科學(xué)記數(shù)法表示為_______米.12.如圖,在平面直角坐標(biāo)系中,拋物線可通過(guò)平移變換向__________得到拋物線,其對(duì)稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.13.已知m=,n=,那么2016m﹣n=_____.14.如圖,以點(diǎn)O為圓心的兩個(gè)圓中,大圓的弦AB切小圓于點(diǎn)C,OA交小圓于點(diǎn)D,若OD=2,tan∠OAB=,則AB的長(zhǎng)是________.15.已知:如圖,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長(zhǎng)線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.16.分解因式:ax2-a=______.三、解答題(共8題,共72分)17.(8分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點(diǎn),點(diǎn)B在數(shù)軸的正半軸上運(yùn)動(dòng),點(diǎn)B在數(shù)軸上所表示的數(shù)為m.當(dāng)半圓D與數(shù)軸相切時(shí),m=.半圓D與數(shù)軸有兩個(gè)公共點(diǎn),設(shè)另一個(gè)公共點(diǎn)是C.①直接寫出m的取值范圍是.②當(dāng)BC=2時(shí),求△AOB與半圓D的公共部分的面積.當(dāng)△AOB的內(nèi)心、外心與某一個(gè)頂點(diǎn)在同一條直線上時(shí),求tan∠AOB的值.18.(8分)如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說(shuō)明理由.19.(8分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.20.(8分)咸寧市某中學(xué)為了解本校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂四類電視節(jié)目的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:=1\*GB2⑴補(bǔ)全條形統(tǒng)計(jì)圖,“體育”對(duì)應(yīng)扇形的圓心角是度;=2\*GB2⑵根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校名學(xué)生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機(jī)抽取人去參加“新聞小記者”培訓(xùn),請(qǐng)用列表法或者畫樹狀圖的方法求所抽取的人來(lái)自不同班級(jí)的概率21.(8分)“六一”兒童節(jié)前夕,某縣教育局準(zhǔn)備給留守兒童贈(zèng)送一批學(xué)習(xí)用品,先對(duì)紅星小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個(gè)班級(jí),補(bǔ)全條形統(tǒng)計(jì)圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學(xué)共有60個(gè)教學(xué)班,請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.22.(10分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點(diǎn)M,交AB于點(diǎn)N,連接BM.求m的值和反比例函數(shù)的表達(dá)式;直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?23.(12分)如圖,中,,于,,為邊上一點(diǎn).(1)當(dāng)時(shí),直接寫出,.(2)如圖1,當(dāng),時(shí),連并延長(zhǎng)交延長(zhǎng)線于,求證:.(3)如圖2,連交于,當(dāng)且時(shí),求的值.24.(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識(shí)競(jìng)賽“,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:成績(jī)分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計(jì)■1(1)寫出a,b,c的值;(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來(lái)自同一組的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似可得△AED∽△BDF所以,設(shè)AD=a,BD=2a,AB=BC=CA=3a,再設(shè)CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【題目點(diǎn)撥】本題考查相似三角形的判定及性質(zhì).2、A【解題分析】
根據(jù)絕對(duì)值的概念計(jì)算即可.(絕對(duì)值是指一個(gè)數(shù)在坐標(biāo)軸上所對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值.)【題目詳解】根據(jù)絕對(duì)值的概念可得-4的絕對(duì)值為4.【題目點(diǎn)撥】錯(cuò)因分析:容易題.選錯(cuò)的原因是對(duì)實(shí)數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.3、A【解題分析】試題分析:選項(xiàng)A為最簡(jiǎn)分式;選項(xiàng)B化簡(jiǎn)可得原式==;選項(xiàng)C化簡(jiǎn)可得原式==;選項(xiàng)D化簡(jiǎn)可得原式==,故答案選A.考點(diǎn):最簡(jiǎn)分式.4、C【解題分析】
先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【題目詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【題目點(diǎn)撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個(gè)特殊角的三角函數(shù)值以及相反數(shù)的概念.5、C【解題分析】
根據(jù)關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),可得答案.【題目詳解】解:點(diǎn),與點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是,
故選:C.【題目點(diǎn)撥】本題考查了關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于x軸對(duì)稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).6、D【解題分析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應(yīng)滿足:x≠﹣1.故選D.考點(diǎn):分式有意義的條件.7、B【解題分析】【分析】可以利用求根公式求出方程的根,根據(jù)勾股定理求出AB的長(zhǎng),進(jìn)而求得AD的長(zhǎng),即可發(fā)現(xiàn)結(jié)論.【解答】用求根公式求得:∵∴∴AD的長(zhǎng)就是方程的正根.故選B.【點(diǎn)評(píng)】考查解一元二次方程已經(jīng)勾股定理等,熟練掌握公式法解一元二次方程是解題的關(guān)鍵.8、C【解題分析】
首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關(guān)系變?yōu)橄瓤旌舐绢}目詳解】根據(jù)題意和圖形的形狀,可知水的最大深度h與時(shí)間t之間的關(guān)系分為兩段,先快后慢。故選:C.【題目點(diǎn)撥】此題考查函數(shù)的圖象,解題關(guān)鍵在于觀察圖形9、B【解題分析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長(zhǎng)方形的圖形.【題目詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對(duì)角線的矩形,故本選項(xiàng)錯(cuò)誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長(zhǎng)方形,故本選項(xiàng)正確;C、主視圖為長(zhǎng)方形,左視圖為長(zhǎng)方形,俯視圖為圓,故本選項(xiàng)錯(cuò)誤;D、主視圖為長(zhǎng)方形,左視圖為長(zhǎng)方形,俯視圖為長(zhǎng)方形,故本選項(xiàng)錯(cuò)誤.故選:B.【題目點(diǎn)撥】本題重點(diǎn)考查三視圖的定義以及考查學(xué)生的空間想象能力.10、D【解題分析】
根據(jù)平移不改變圖形的形狀和大小,將題中所示的圖案通過(guò)平移后可以得到的圖案是D.【題目詳解】解:觀察圖形可知圖案D通過(guò)平移后可以得到.
故選D.【題目點(diǎn)撥】本題考查圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學(xué)生易混淆圖形的平移與旋轉(zhuǎn)或翻轉(zhuǎn).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.2×10﹣1.【解題分析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【題目詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【題目點(diǎn)撥】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.12、先向右平移2個(gè)單位再向下平移2個(gè)單位;4【解題分析】.平移后頂點(diǎn)坐標(biāo)是(2,-2),利用割補(bǔ)法,把x軸上方陰影部分補(bǔ)到下方,可以得到矩形面積,面積是.13、1【解題分析】
根據(jù)積的乘方的性質(zhì)將m的分子轉(zhuǎn)化為以3和5為底數(shù)的冪的積,然后化簡(jiǎn)從而得到m=n,再根據(jù)任何非零數(shù)的零次冪等于1解答.【題目詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【題目點(diǎn)撥】本題考查了同底數(shù)冪的除法,積的乘方的性質(zhì),難點(diǎn)在于轉(zhuǎn)化m的分母并得到m=n.14、8【解題分析】
如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【題目詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8【題目點(diǎn)撥】本題考查切線的性質(zhì)、垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形,屬于中考??碱}型.15、2﹣π.【解題分析】試題分析:根據(jù)題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據(jù)∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.16、【解題分析】
先提公因式,再套用平方差公式.【題目詳解】ax2-a=a(x2-1)=故答案為:【題目點(diǎn)撥】掌握因式分解的一般方法:提公因式法,公式法.三、解答題(共8題,共72分)17、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解題分析】
(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時(shí),只有一個(gè)公共點(diǎn),和當(dāng)O、A、B三點(diǎn)在數(shù)軸上時(shí),求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當(dāng)OB=AB時(shí),內(nèi)心、外心與頂點(diǎn)B在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,列出方程求解即可解答如圖2,當(dāng)OB=OA時(shí),內(nèi)心、外心與頂點(diǎn)O在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,列出方程求解即可解答【題目詳解】(1)當(dāng)半圓與數(shù)軸相切時(shí),AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時(shí),只有一個(gè)公共點(diǎn),此時(shí)m=,當(dāng)O、A、B三點(diǎn)在數(shù)軸上時(shí),m=7+4=11,∴半圓D與數(shù)軸有兩個(gè)公共點(diǎn)時(shí),m的取值范圍為.故答案為.②如圖,連接DC,當(dāng)BC=2時(shí),∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當(dāng)OB=AB時(shí),內(nèi)心、外心與頂點(diǎn)B在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當(dāng)OB=OA時(shí),內(nèi)心、外心與頂點(diǎn)O在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【題目點(diǎn)撥】此題此題考勾股定理,切線的性質(zhì),等邊三角形的判定和性質(zhì),三角形的內(nèi)心和外心,解題關(guān)鍵在于作輔助線18、證明見解析.【解題分析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【題目詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.19、(1)見解析;(2)tan∠DBC=.【解題分析】
(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質(zhì)得∠AEO=90°,則根據(jù)垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計(jì)算出AE,則根據(jù)正切的定義得到tan∠DAE的值,然后根據(jù)圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【題目詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【題目點(diǎn)撥】垂徑定理及圓周角定理是本題的考點(diǎn),熟練掌握垂徑定理及圓周角定理是解題的關(guān)鍵.20、(1)72;(2)700;(3).【解題分析】試題分析:(1)根據(jù)動(dòng)畫類人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他類型人數(shù)可得體育類人數(shù),用360度乘以體育類人數(shù)所占比例即可得;(2)用樣本估計(jì)總體的思想解決問題;(3)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.試題解析:(1)調(diào)查的學(xué)生總數(shù)為60÷30%=200(人),則體育類人數(shù)為200﹣(30+60+70)=40,補(bǔ)全條形圖如下:“體育”對(duì)應(yīng)扇形的圓心角是360°×=72°;(2)估計(jì)該校2000名學(xué)生中喜愛“娛樂”的有:2000×=700(人),(3)將兩班報(bào)名的學(xué)生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:所以P(2名學(xué)生來(lái)自不同班)=.考點(diǎn):扇形統(tǒng)計(jì)圖;條形統(tǒng)計(jì)圖;列表法與樹狀圖法;用樣本估計(jì)總體.21、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解題分析】
(1)根據(jù)有7名留守兒童班級(jí)有2個(gè),所占的百分比是2.5%,即可求得班級(jí)的總個(gè)數(shù),再求出有8名留守兒童班級(jí)的個(gè)數(shù),進(jìn)而補(bǔ)全條形統(tǒng)計(jì)圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計(jì)的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級(jí)數(shù)60乘以(2)中求得的平均數(shù)即可.【題目詳解】解:(1)該校的班級(jí)數(shù)是:2÷2.5%=16(個(gè)).則人數(shù)是8名的班級(jí)數(shù)是:16﹣1﹣2﹣6﹣2=5(個(gè)).條形統(tǒng)計(jì)圖補(bǔ)充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計(jì)的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學(xué)生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學(xué)生中共有留守兒童1名.【題目點(diǎn)撥】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。部疾榱似骄鶖?shù)、中位數(shù)和眾數(shù)以及用樣本估計(jì)總體.22、(1)m=8,反比例函數(shù)的表達(dá)式為y=;(2)當(dāng)n=3時(shí),△BMN的面積最大.【解題分析】
(1)求出點(diǎn)A的坐標(biāo),利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【題目詳解】解:(1)∵直線y=2x+6經(jīng)過(guò)點(diǎn)A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過(guò)點(diǎn)A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點(diǎn)M,N的坐標(biāo)為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時(shí),△BMN的面積最大.23、(1),;(2)證明見解析;(3).【解題分析】
(1)利用相似三角形的判定可得,列出比例式即可求出結(jié)論;(2)作交于,設(shè),則,根據(jù)平行線分線段成比例定理列出比例式即可求出AH和EH,然后根據(jù)平行線分線段成比例定理列出比例式即可得出結(jié)論;(3)作于,根據(jù)相似三角形的判定可得,列出比例式可得,設(shè),,,即可求出x的值,根據(jù)平行線分線段成比例定理求出,設(shè),,,然后根據(jù)勾股定理求出AC,即可得出結(jié)論.【題目詳解】(1)如圖1中,當(dāng)時(shí),.,,,,,,.故答案為:,.(2)如圖中,作
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 團(tuán)委干部培訓(xùn)
- 中醫(yī)心肌梗塞護(hù)理
- DB43-T 2871-2023 農(nóng)貿(mào)市場(chǎng)食品安全管理技術(shù)規(guī)范
- 一年級(jí)數(shù)學(xué)下冊(cè)期末測(cè)試卷A(含答案)
- 滴滴代駕服務(wù)課件
- 幼兒園小班社會(huì)衣服會(huì)說(shuō)話教案
- 多益校招java面試題及答案
- 家庭教育的小講座
- 融創(chuàng)傳奇面試題及答案
- 滋養(yǎng)細(xì)胞疾病護(hù)理常規(guī)
- 2024北森圖形推理題
- 知識(shí)產(chǎn)權(quán)培訓(xùn)課件亞馬遜
- 病媒生物防治試題及答案
- 全屋智能合同樣本
- 城市居住區(qū)規(guī)劃設(shè)計(jì)規(guī)范
- 基于UHPC的蝶形腹板混凝土拱橋創(chuàng)新設(shè)計(jì)研究
- 口腔科針刺傷處理流程
- 臨時(shí)占地免責(zé)協(xié)議書
- 樹脂瓦施工方案
- 檔案管理員實(shí)操能力考試題試題及答案
- 2025年工會(huì)知識(shí)競(jìng)賽題庫(kù)200題及答案(完整版)
評(píng)論
0/150
提交評(píng)論