




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校數(shù)學(xué)高三第一學(xué)期期末檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1283.已知函數(shù)且的圖象恒過(guò)定點(diǎn),則函數(shù)圖象以點(diǎn)為對(duì)稱(chēng)中心的充要條件是()A. B.C. D.4.設(shè),,則()A. B. C. D.5.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.6.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④7.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.88.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.9.在中,,,,點(diǎn),分別在線段,上,且,,則().A. B. C.4 D.910.集合,,則=()A. B.C. D.11.若,,,則()A. B.C. D.12.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在中,,,,點(diǎn)在邊上,且,將射線繞著逆時(shí)針?lè)较蛐D(zhuǎn),并在所得射線上取一點(diǎn),使得,連接,則的面積為_(kāi)_________.14.下圖是一個(gè)算法流程圖,則輸出的S的值是______.15.如圖,四面體的一條棱長(zhǎng)為,其余棱長(zhǎng)均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為_(kāi)___.16.在直角三角形中,為直角,,點(diǎn)在線段上,且,若,則的正切值為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)的內(nèi)角、、的對(duì)邊長(zhǎng)分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.19.(12分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)寫(xiě)出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點(diǎn)M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動(dòng)點(diǎn),求面積的最大值.20.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.21.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求出復(fù)數(shù),得出其對(duì)應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對(duì)應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
根據(jù)給定的程序框圖,逐次計(jì)算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
由題可得出的坐標(biāo)為,再利用點(diǎn)對(duì)稱(chēng)的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題和函數(shù)對(duì)稱(chēng)性的應(yīng)用,屬于基礎(chǔ)題.4、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點(diǎn)睛】本題主要考查了一次不等式的解集以及集合的交集運(yùn)算,屬于基礎(chǔ)題.5、A【解析】
設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點(diǎn)的軌跡方程,將和轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡(jiǎn)得點(diǎn)的軌跡方程為,則,則轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,,,轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,.故選:A.【點(diǎn)睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問(wèn)題轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離的最值問(wèn)題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.6、D【解析】
①通過(guò)證明平面,證得;②通過(guò)證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.7、A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個(gè)四棱錐,四棱錐底面是邊長(zhǎng)為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.8、A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.9、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點(diǎn)睛】此題考查余弦定理和向量的數(shù)量積運(yùn)算,掌握基本概念和公式即可解決,屬于簡(jiǎn)單題目.10、C【解析】
先化簡(jiǎn)集合A,B,結(jié)合并集計(jì)算方法,求解,即可.【詳解】解得集合,所以,故選C.【點(diǎn)睛】本道題考查了集合的運(yùn)算,考查了一元二次不等式解法,關(guān)鍵化簡(jiǎn)集合A,B,難度較?。?1、C【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來(lái)比較,考查推理能力,屬于基礎(chǔ)題.12、B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)椋?,所以,所以,故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由余弦定理求得,再結(jié)合正弦定理得,進(jìn)而得,得,則面積可求【詳解】由,得,解得.因?yàn)?,所以,,所?又因?yàn)椋?因?yàn)?,所?故答案為【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,考查運(yùn)算求解能力,是中檔題14、【解析】
根據(jù)流程圖,運(yùn)行程序即得.【詳解】第一次運(yùn)行,;第二次運(yùn)行,;第三次運(yùn)行,;第四次運(yùn)行;所以輸出的S的值是.故答案為:【點(diǎn)睛】本題考查算法流程圖,是基礎(chǔ)題.15、(或?qū)懗?【解析】試題分析:設(shè),取中點(diǎn)則,因此,所以,因?yàn)樵趩握{(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點(diǎn):函數(shù)最值,函數(shù)單調(diào)區(qū)間16、3【解析】
在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點(diǎn)睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】
(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)椋裕?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)椋?,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡(jiǎn),即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡(jiǎn)為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時(shí)取最大值.故的最大值為.【點(diǎn)睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題19、(1),,;(2).【解析】
(1)利用公式即可求得曲線的極坐標(biāo)方程;聯(lián)立直線和曲線的極坐標(biāo)方程,即可求得交點(diǎn)坐標(biāo);(2)設(shè)出點(diǎn)坐標(biāo)的參數(shù)形式,將問(wèn)題轉(zhuǎn)化為求三角函數(shù)最值的問(wèn)題即可求得.【詳解】(1)曲線的極坐標(biāo)方程:聯(lián)立,得,又因?yàn)槎紳M足兩方程,故兩曲線的交點(diǎn)為,.(2)易知,直線.設(shè)點(diǎn),則點(diǎn)到直線的距離(其中).面積的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問(wèn)題,屬綜合中檔題.20、(1)①當(dāng)時(shí),在單調(diào)遞增,②當(dāng)時(shí),單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見(jiàn)解析【解析】
(1)先求解導(dǎo)函數(shù),然后對(duì)參數(shù)分類(lèi)討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當(dāng)時(shí),恒成立,則在單調(diào)遞增②當(dāng)時(shí),令得,解得,又,∴∴當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個(gè)實(shí)數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒(méi)有證明,扣3分)關(guān)于的證明:(1)且時(shí),(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點(diǎn)睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對(duì)于含參函數(shù)單調(diào)性的分析,可通過(guò)分析參數(shù)的臨界值,由此分類(lèi)討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達(dá)到證明不等式的目的.21、(1)(2)證明見(jiàn)解析【解析】
(1)依題意可得,考慮到,則有再分類(lèi)討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無(wú)解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時(shí)取等號(hào)).所以成立,故成立.【點(diǎn)睛】本題考查分類(lèi)討論法解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專(zhuān)用施工合同范本模板
- 會(huì)展投資合同范本
- 農(nóng)村土方 工程合同范本
- 化工產(chǎn)品營(yíng)銷(xiāo)合同范本
- Starter Section 3 Saying Hello 教學(xué)設(shè)計(jì)2024-2025學(xué)年北師大版(2024)七年級(jí)英語(yǔ)上冊(cè)
- 企業(yè)質(zhì)押合同范本
- 供車(chē)協(xié)議合同范本
- 2024年寧波市消防救援支隊(duì)社會(huì)招錄政府專(zhuān)職消防員考試真題
- 2024年南平市建陽(yáng)區(qū)社會(huì)統(tǒng)一教師招聘考試真題
- 勞動(dòng)派遣居間合同范本
- 垃圾清運(yùn)管理制度12篇
- 【跨境電商零售進(jìn)口稅收征管對(duì)策及建議16000字(論文)】
- DZ∕T 0332-2020 碳酸鹽巖油氣藏縫洞體雕刻法資源儲(chǔ)量估算規(guī)范(正式版)
- 社會(huì)學(xué)(高校社會(huì)學(xué)入門(mén)課程)全套教學(xué)課件
- 2024年湖南有色金屬職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)帶答案
- 心血管介入護(hù)士進(jìn)修匯報(bào)
- 創(chuàng)傷中心匯報(bào)
- 施工組織設(shè)計(jì)內(nèi)部審批表
- 與醫(yī)保有關(guān)的信息系統(tǒng)相關(guān)材料-模板
- 《企業(yè)的可持續(xù)發(fā)展》課件
- 零至三歲兒童及老年人中醫(yī)保健指導(dǎo)專(zhuān)業(yè)知識(shí)講座培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論