




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省寧波市奉化區(qū)重點名校2024學(xué)年中考數(shù)學(xué)押題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.學(xué)習(xí)全等三角形時,數(shù)學(xué)興趣小組設(shè)計并組織了“生活中的全等”的比賽,全班同學(xué)的比賽結(jié)果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分2.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、63.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處4.下列運算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x35.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n6.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.7.若關(guān)于的一元二次方程x(x+1)+ax=0有兩個相等的實數(shù)根,則實數(shù)a的值為()A. B.1 C. D.8.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內(nèi)任意一點(點E不在直線AB、CD、AC上),設(shè)∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數(shù)可能是()A.①②③ B.①②④ C.①③④ D.①②③④9.如果關(guān)于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..10.如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.其中會隨點P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:a3-12a2+36a=______.12.如圖,扇形OAB的圓心角為30°,半徑為1,將它沿箭頭方向無滑動滾動到O′A′B′的位置時,則點O到點O′所經(jīng)過的路徑長為_____.13.如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.14.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點)15的處,則小明的影子的長為________.15.2017年7月27日上映的國產(chǎn)電影《戰(zhàn)狼2》,風(fēng)靡全國.劇中“犯我中華者,雖遠(yuǎn)必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學(xué)記數(shù)法表示為_____元.16.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達(dá)B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.17.在比例尺為1:50000的地圖上,量得甲、乙兩地的距離為12厘米,則甲、乙兩地的實際距離是______千米.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形的兩邊、的長分別為3、8,是的中點,反比例函數(shù)的圖象經(jīng)過點,與交于點.若點坐標(biāo)為,求的值及圖象經(jīng)過、兩點的一次函數(shù)的表達(dá)式;若,求反比例函數(shù)的表達(dá)式.19.(5分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.20.(8分)已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數(shù)量關(guān)系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.21.(10分)先化簡,然后從﹣<x<的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.22.(10分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條?。?1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).23.(12分)對幾何命題進(jìn)行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應(yīng)命題后面的括號內(nèi)填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進(jìn)行證明,如果不是,請舉出反例.24.(14分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;(2)求一次打開鎖的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【題目點撥】本題考查數(shù)據(jù)分析.2、D【解題分析】
5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.3、D【解題分析】
到三條相互交叉的公路距離相等的地點應(yīng)是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【題目詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【題目點撥】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.4、B【解題分析】分析:根據(jù)完全平方公式、負(fù)整數(shù)指數(shù)冪,合并同類項以及同底數(shù)冪的除法的運算法則進(jìn)行計算即可判斷出結(jié)果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項錯誤;B.()﹣1=2,故該選項正確;C.x與y不是同類項,不能合并,故該選項錯誤;D.x6÷x2=x6-2=x4,故該選項錯誤.故選B.點睛:可不是主要考查了完全平方公式、負(fù)整數(shù)指數(shù)冪,合并同類項以及同度數(shù)冪的除法的運算,熟記它們的運算法則是解題的關(guān)鍵.5、D【解題分析】
根據(jù)反比例函數(shù)的性質(zhì),可得答案.【題目詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【題目點撥】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關(guān)鍵.6、A【解題分析】
通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關(guān)系,據(jù)此列出方程即可.【題目詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【題目點撥】本題考查了由實際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順?biāo)俣?水流速度+靜水速度,逆水速度=靜水速度-水流速度.7、A【解題分析】【分析】整理成一般式后,根據(jù)方程有兩個相等的實數(shù)根,可得△=0,得到關(guān)于a的方程,解方程即可得.【題目詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數(shù)根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【題目點撥】本題考查一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.8、D【解題分析】
根據(jù)E點有4中情況,分四種情況討論分別畫出圖形,根據(jù)平行線的性質(zhì)與三角形外角定理求解.【題目詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數(shù)可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【題目點撥】此題主要考查平行線的性質(zhì)與外角定理,解題的關(guān)鍵是根據(jù)題意分情況討論.9、A【解題分析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.10、B【解題分析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點:動點問題,平行線間的距離處處相等,三角形的中位線二、填空題(共7小題,每小題3分,滿分21分)11、a(a-6)2【解題分析】
原式提取a,再利用完全平方公式分解即可.【題目詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【題目點撥】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關(guān)鍵.12、【解題分析】
點O到點O′所經(jīng)過的路徑長分三段,先以A為圓心,1為半徑,圓心角為90度的弧長,再平移了AB弧的長,最后以B為圓心,1為半徑,圓心角為90度的弧長.根據(jù)弧長公式計算即可.【題目詳解】解:∵扇形OAB的圓心角為30°,半徑為1,∴AB弧長=∴點O到點O′所經(jīng)過的路徑長=故答案為:【題目點撥】本題考查了弧長公式:.也考查了旋轉(zhuǎn)的性質(zhì)和圓的性質(zhì).13、2【解題分析】
設(shè)MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關(guān)于x的二次函數(shù)關(guān)系式,求二次函數(shù)的最值即可.【題目詳解】作MG⊥DC于G,如圖所示:設(shè)MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當(dāng)10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【題目點撥】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關(guān)鍵.14、1.【解題分析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【題目詳解】解:根據(jù)題意,易得△MBA∽△MCO,
根據(jù)相似三角形的性質(zhì)可知,即,
解得AM=1m.則小明的影長為1米.
故答案是:1.【題目點撥】本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.15、5.68×109【解題分析】試題解析:科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,是正數(shù);當(dāng)原數(shù)的絕對值<1時,是負(fù)數(shù).56.8億故答案為16、或【解題分析】
作PH⊥CD,垂足為H,設(shè)運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【題目詳解】設(shè)P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【題目點撥】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.17、【解題分析】
本題可根據(jù)比例線段進(jìn)行求解.【題目詳解】解:因為在比例尺為1:50000的地圖上甲,乙兩地的距離12cm,所以,甲、乙的實際距離x滿足12:x=1:50000,即x=12=600000cm=6km.故答案為6.【題目點撥】本題主要考查比例尺和比例線段的相關(guān)知識.三、解答題(共7小題,滿分69分)18、(1),;(2).【解題分析】分析:(1)由已知求出A、E的坐標(biāo),即可得出m的值和一次函數(shù)函數(shù)的解析式;(2)由,得到,由,得到.設(shè)點坐標(biāo)為,則點坐標(biāo)為,代入反比例函數(shù)解析式即可得到結(jié)論.詳解:(1)∵為的中點,∴.∵反比例函數(shù)圖象過點,∴.設(shè)圖象經(jīng)過、兩點的一次函數(shù)表達(dá)式為:,∴,解得,∴.(2)∵,∴.∵,∴,∴.設(shè)點坐標(biāo)為,則點坐標(biāo)為.∵兩點在圖象上,∴,解得:,∴,∴,∴.點睛:本題考查了矩形的性質(zhì)以及反比例函數(shù)一次函數(shù)的解析式.解題的關(guān)鍵是求出點A、E、F的坐標(biāo).19、(1)見解析;(2)2.【解題分析】
(1)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì),可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質(zhì)及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【題目詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【題目點撥】此題考查平行四邊形的性質(zhì)及判斷,考查菱形的判斷及性質(zhì),及解直角三角形,解題關(guān)鍵在于掌握判定定理和利用三角函數(shù)進(jìn)行計算.20、(1)AB=2;相等;(2)a=±;(3),.【解題分析】
(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設(shè)出點B的坐標(biāo)為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因為拋物線y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長的數(shù)量關(guān)系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點B的坐標(biāo),得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長為n得出點B的坐標(biāo),然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡得mn-4m-1=0,拋物線的“完美三角形”斜邊長為n,所以拋物線2的“完美三角形”斜邊長為n,得出B點坐標(biāo),代入可得mn關(guān)系式,即可求出m、n的值.【題目詳解】(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設(shè)B點坐標(biāo)為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長為4,∴拋物線的“完美三角形”斜邊的長為4,∴B點坐標(biāo)為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長為n,∴拋物線的“完美三角形”斜邊長為n,∴B點坐標(biāo)為,∴代入拋物線,得,∴(不合題意舍去),∴,∴21、【解題分析】
根據(jù)分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內(nèi)選取一個使得原分式有意義的整數(shù)作為x的值代入即可解答本題.【題目詳解】解:÷(﹣x+1)====,當(dāng)x=﹣2時,原式=.【題目點撥】本題考查分式的化簡求值、估算無理數(shù)的大小,解答本題的關(guān)鍵是明確分式化簡求值的方法.22、(1)π,2π;(2)(n﹣2)π.【解題分析】
(1)利用弧長公式和三角形和四邊形的內(nèi)角和公式代入計算;(2)利用多邊形的內(nèi)角和公式和弧長公式計算.【題目詳解】(1)利用弧長公式可得=π,因為n1+n2+n3=180°.同理,四邊形的==2π,因為四邊形的內(nèi)角和為360度;(2)n條?。剑?n﹣2)π.【題目點撥】本題考查了多邊形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西藏拉薩典當(dāng)管理辦法
- 居家衛(wèi)生管理辦法細(xì)則
- 西藏疫情管理辦法細(xì)則
- 福州市百校數(shù)學(xué)試卷
- 高考筆刷題數(shù)學(xué)試卷
- 二模2024數(shù)學(xué)試卷
- 高中學(xué)生做高考數(shù)學(xué)試卷
- 高二選選修二數(shù)學(xué)試卷
- 部編版小學(xué)語文《習(xí)作單元的編排特點及教學(xué)建議》課件
- 肖像兒童畫課件
- 更換給水水泵的施工方案
- 三叉神經(jīng)痛(講)課件
- 企業(yè)工會采購制度管理規(guī)定
- 糖尿病患者低血糖發(fā)生原因分析品管圈魚骨圖柏拉圖
- 放射科入科教育-課件
- 2018年三年級數(shù)學(xué)下冊期末試卷A3(附答題卡、答案)
- 瓶胚工藝培訓(xùn)
- 地下連續(xù)墻成槽垂直度控制
- 【超星爾雅學(xué)習(xí)通】《老子》《論語》今讀網(wǎng)課章節(jié)答案
- 山水林田湖試點銅川市耀州區(qū)沮河下游生態(tài)保護修復(fù)項目環(huán)評報告
- 電廠安全紅線管理辦法范本
評論
0/150
提交評論