版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學年陜西省寶雞市陳倉區(qū)市級名校中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各運算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a22.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°3.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠04.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為A. B.C. D.5.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.466.鄭州某中學在備考2018河南中考體育的過程中抽取該校九年級20名男生進行立定跳遠測試,以便知道下一階段的體育訓練,成績?nèi)缦滤荆撼煽儯▎挝唬好祝?.102.202.252.302.352.402.452.50人數(shù)23245211則下列敘述正確的是()A.這些運動員成績的眾數(shù)是5B.這些運動員成績的中位數(shù)是2.30C.這些運動員的平均成績是2.25D.這些運動員成績的方差是0.07257.如圖,三棱柱ABC﹣A1B1C1的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(cè)(左)視圖的面積為()A. B. C. D.48.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°9.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.1910.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐11.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為()A.54° B.64° C.74° D.26°12.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.72二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調(diào)查,要求每名學生只寫一類最喜歡的球類運動,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分那么,其中最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為____________%14.已知二次函數(shù)中,函數(shù)y與x的部分對應(yīng)值如下:...-10123......105212...則當時,x的取值范圍是_________.15.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.16.一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為:_________________17.如圖,在平面直角坐標系中,菱形ABCD的頂點A的坐標為(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______.18.某航空公司規(guī)定,旅客乘機所攜帶行李的質(zhì)量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費行李的最大質(zhì)量為kg三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)20.(6分)解不等式組,并寫出其所有的整數(shù)解.21.(6分)如圖所示,某校九年級(3)班的一個學習小組進行測量小山高度的實踐活動.部分同學在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結(jié)果都不取近似值)22.(8分)如圖,在平面直角坐標系中,拋物線的圖象經(jīng)過和兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點在拋物線的對稱軸上,與直線和軸都相切,求點的坐標.23.(8分)藝術(shù)節(jié)期間,學校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,回答下列問題:(1)請你將條形統(tǒng)計圖補充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學生恰好是一男一女的概率.24.(10分)先化簡,然后從﹣1,0,2中選一個合適的x的值,代入求值.25.(10分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.26.(12分)如圖,直角坐標系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.27.(12分)我市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學生;扇形統(tǒng)計圖中D所在扇形的圓心角為;將上面的條形統(tǒng)計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【題目詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【題目點撥】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關(guān)鍵.2、B【解題分析】
先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【題目詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【題目點撥】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).3、C【解題分析】
分式分母不為0,所以,解得.故選:C.4、A【解題分析】
直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【題目詳解】解:設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為:﹣=1.故選A.【題目點撥】本題主要考查了由實際問題抽象出分式方程,根據(jù)題意得出正確等量關(guān)系是解題的關(guān)鍵.5、B【解題分析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【題目詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【題目點撥】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識點.6、B【解題分析】
根據(jù)方差、平均數(shù)、中位數(shù)和眾數(shù)的計算公式和定義分別對每一項進行分析,即可得出答案.【題目詳解】由表格中數(shù)據(jù)可得:A、這些運動員成績的眾數(shù)是2.35,錯誤;B、這些運動員成績的中位數(shù)是2.30,正確;C、這些運動員的平均成績是2.30,錯誤;D、這些運動員成績的方差不是0.0725,錯誤;故選B.【題目點撥】考查了方差、平均數(shù)、中位數(shù)和眾數(shù),熟練掌握定義和計算公式是本題的關(guān)鍵,平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.7、B【解題分析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側(cè)棱長,把相關(guān)數(shù)值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(cè)(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關(guān)鍵是得到求左視圖的面積的等量關(guān)系,難點是得到側(cè)面積的寬度.8、C【解題分析】
首先求得AB與正東方向的夾角的度數(shù),即可求解.【題目詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【題目點撥】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.9、B【解題分析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.10、C【解題分析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.11、B【解題分析】
根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【題目詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【題目點撥】本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對邊平行以及對角線相互垂直的性質(zhì).12、B【解題分析】
根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質(zhì)得出CD=DH,再由三角形的面積公式可得出結(jié)論.【題目詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【題目點撥】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1%【解題分析】
依據(jù)最喜歡羽毛球的學生數(shù)以及占被調(diào)查總?cè)藬?shù)的百分比,即可得到被調(diào)查總?cè)藬?shù),進而得出最喜歡籃球的學生數(shù)以及最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比.【題目詳解】∵被調(diào)查學生的總數(shù)為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比=×100%=1%,
故答案為:1.【題目點撥】本題主要考查扇形統(tǒng)計圖,扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關(guān)系.14、0<x<4【解題分析】
根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結(jié)合表格中所給數(shù)據(jù)可得出答案.【題目詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【題目點撥】此題主要考查了二次函數(shù)的性質(zhì),利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學們應(yīng)熟練掌握.15、(,)【解題分析】
連接AC,根據(jù)題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標為(0,2),可設(shè)拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標代入求解,最后將解析式化為頂點式即可.【題目詳解】解:連接AC,∵A、B兩點的橫坐標分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標為(0,2),∵A、B兩點的橫坐標分別為﹣1,4,∴設(shè)拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標為(,).故答案為:(,).【題目點撥】本題主要考查相似三角形的判定與性質(zhì),拋物線的頂點式,解此題的關(guān)鍵在于熟練掌握其知識點,利用相似三角形的性質(zhì)求得關(guān)鍵點的坐標.16、2【解題分析】
如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,利用正方形的性質(zhì)得到OH為正方形ABCD的內(nèi)切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質(zhì)得OA=2OH即可解答.【題目詳解】解:如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內(nèi)切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為22故答案為:22【題目點撥】本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關(guān)概念.17、【解題分析】
根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標,由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【題目詳解】拋物線的對稱軸為x=-.∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,∴點C的橫坐標為-1.∵四邊形ABCD為菱形,∴AB=BC=AD=1,∴點D的坐標為(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD?OB=1×4=3.故答案為3.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.18、20【解題分析】設(shè)函數(shù)表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質(zhì)量為20kg三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解題分析】
三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【題目詳解】作∠CDP=∠BCD,PD與AC的交點即P.【題目點撥】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進行解題.20、不等式組的解集為1≤x<2,該不等式組的整數(shù)解為1,2,1.【解題分析】
先求出不等式組的解集,即可求得該不等式組的整數(shù)解.【題目詳解】由①得,x≥1,由②得,x<2.所以不等式組的解集為1≤x<2,該不等式組的整數(shù)解為1,2,1.【題目點撥】本題考查的是解一元一次不等式組及求一元一次不等式組的整數(shù)解,求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.21、米【解題分析】
解:如圖,過點D作DE⊥AC于點E,作DF⊥BC于點F,則有DE∥FC,DF∥EC.∵∠DEC=90°,∴四邊形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=,∴DE=180?sin30°=180×=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,∴BF=180?sin60°=180×(米).∴BC=BF+FC=90+90=90(+1)(米).答:小山的高度BC為90(+1)米.22、(1);(2);(3)或.【解題分析】
(1)根據(jù)圖象經(jīng)過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),可利用待定系數(shù)法求出二次函數(shù)解析式;
(2)根據(jù)直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,得出AC,BC的長,得出B點的坐標,即可利用待定系數(shù)法求出一次函數(shù)解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圓的半徑,即可得出P點的坐標.【題目詳解】(1)拋物線的圖象經(jīng)過,,,把,,代入得:解得:,拋物線解析式為;(2)拋物線改寫成頂點式為,拋物線對稱軸為直線,∴對稱軸與軸的交點C的坐標為,,設(shè)點B的坐標為,,則,,∴∴點B的坐標為,設(shè)直線解析式為:,把,代入得:,解得:,直線解析式為:.(3)①∵當點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,
設(shè)⊙P與AB相切于點F,與x軸相切于點C,如圖1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標為(2,);②設(shè)⊙P與AB相切于點F,與軸相切于點C,如圖2:∴PF⊥AB,PF=PC,
∵AC=3,BC=4,AB=5,∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標為(2,-6),綜上所述,與直線和都相切時,或.【題目點撥】本題考查了二次函數(shù)綜合題,涉及到用待定系數(shù)法求一函數(shù)的解析式、二次函數(shù)的解析式及相似三角形的判定和性質(zhì)、切線的判定和性質(zhì),根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.23、(1)圖形見解析,216件;(2)【解題分析】
(1)由B班級的作品數(shù)量及其占總數(shù)量的比例可得4個班作品總數(shù),再求得D班級的數(shù)量,可補全條形圖,再用36乘四個班的平均數(shù)即估計全校的作品數(shù);
(2)列表得出所有等可能結(jié)果,從中找到一男、一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【題目詳解】(1)4個班作品總數(shù)為:件,所以D班級作品數(shù)量為:36-6-12-10=8;∴估計全校共征集作品×36=324件.
條形圖如圖所示,
(2)男生有3名,分別記為A1,A2,A3,女生記為B,
列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12種等可能情況,其中選取的兩名學生恰好是一男一女的有6種.
所以選取的兩名學生恰好是一男一女的概率為.【題目點撥】考查了列表法或樹狀圖法求概率以及扇形與條形統(tǒng)計圖的知識.注意掌握扇形統(tǒng)計圖與條形統(tǒng)計圖的對應(yīng)關(guān)系.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、-.【解題分析】
先把分式除法轉(zhuǎn)換成乘法進行約分化簡,然后再找出分式的最小公分母通分進行化簡求值,在代入求值時要保證每一個分式的分母不能為1【題目詳解】解:原式=-=-===-.當x=-1或者x=1時分式?jīng)]有意義所以選擇當x=2時,原式=.【題目點撥】分式的化簡求值是此題的考點,需要特別注意的是分式的分母不能為1.25、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解題分析】
(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結(jié)論.【題目詳解】(1)①如圖1,,反比例函數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國細氣泡曝氣盤行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國EPE熱風復合增厚機行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國對夾式中線蝶閥數(shù)據(jù)監(jiān)測研究報告
- 二零二五年度企事業(yè)單位行政設(shè)施采購合同范本3篇
- 2025版電力設(shè)備監(jiān)造與運行維護服務(wù)協(xié)議3篇
- 二零二五年度社會保險投資管理合同范本3篇
- 二零二五年度教育培訓機構(gòu)教務(wù)管理人員派遣協(xié)議3篇
- 二零二五年度汽車銷售渠道建設(shè)合同模板3篇
- 二零二五年度個人之間健康養(yǎng)生借款合同標準文本2篇
- 二零二五年度無息借款協(xié)議范本發(fā)布2篇
- (完整版)高考英語詞匯3500詞(精校版)
- 我的家鄉(xiāng)瓊海
- (2025)專業(yè)技術(shù)人員繼續(xù)教育公需課題庫(附含答案)
- 從心理學看現(xiàn)代家庭教育課件
- C語言程序設(shè)計PPT(第7版)高職完整全套教學課件
- 頭頸外科臨床診療指南2021版
- 大國重器北斗系統(tǒng)
- 網(wǎng)球運動知識教育PPT模板
- 防火墻漏洞掃描基礎(chǔ)知識
- 運動技能學習PPT
- 軟件風險分析報告
評論
0/150
提交評論