高一數(shù)學(xué)函數(shù)的單調(diào)性教案_第1頁(yè)
高一數(shù)學(xué)函數(shù)的單調(diào)性教案_第2頁(yè)
高一數(shù)學(xué)函數(shù)的單調(diào)性教案_第3頁(yè)
高一數(shù)學(xué)函數(shù)的單調(diào)性教案_第4頁(yè)
高一數(shù)學(xué)函數(shù)的單調(diào)性教案_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

函數(shù)的單調(diào)性

教學(xué)目標(biāo)1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡(jiǎn)單函數(shù)在給定區(qū)間上的單調(diào)性.2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識(shí)問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辯證唯物主義的教育.

教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.

教學(xué)過程設(shè)計(jì)一、引入新課師:請(qǐng)同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?(用投影幻燈給出兩組函數(shù)的圖象.)第一組:第二組:生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減?。畮煟海ㄊ謭?zhí)投影棒使之沿曲線移動(dòng))對(duì).他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時(shí),第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變?。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們?cè)趯W(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時(shí),就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對(duì)函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.(點(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識(shí)的,又是新的知識(shí),引起學(xué)生的注意.)

二、對(duì)概念的分析(板書課題:函數(shù)的單調(diào)性)師:請(qǐng)同學(xué)們打開課本第51頁(yè),請(qǐng)××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.(學(xué)生朗讀.)師:好,請(qǐng)坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請(qǐng)同學(xué)們思考一個(gè)問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?生:我認(rèn)為是一致的.定義中的“當(dāng)時(shí),都有”描述了y隨x的增大而增大;“當(dāng)時(shí),都有”描述了y隨x的增大而減少.師:說得非常正確.定義中用了兩個(gè)簡(jiǎn)單的不等關(guān)系“”和“或”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!(通過教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)師:現(xiàn)在請(qǐng)同學(xué)們和我一起來看剛才的兩組圖中的第一個(gè)函數(shù)和的圖象,體會(huì)這種魅力.(指圖說明.)師:圖中對(duì)于區(qū)間[a,b]上的任意,,當(dāng)時(shí),都有,因此在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)的單調(diào)增區(qū)間;而圖中對(duì)于區(qū)間[a,b]上的任意,,當(dāng)時(shí),都有,因此在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)的單調(diào)減區(qū)間.(教師指圖說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識(shí)融為一體,加深對(duì)概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)……(不把話說完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)生:較大的函數(shù)值的函數(shù).師:那么減函數(shù)呢?生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)較小的函數(shù)值的函數(shù).(學(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)師:?jiǎn)柕煤茫@說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,b]上單調(diào)(增或減),且[,][a,b],則f(x)在[,](增或減).反之不然.例2證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).師:從函數(shù)圖象上觀察函數(shù)的單調(diào)性固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會(huì)根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.(指出用定義證明的必要性.)師:怎樣用定義證明呢?請(qǐng)同學(xué)們思考后在筆記本上寫出證明過程.(教師巡視,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會(huì)對(duì)如何比較和的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)師:對(duì)于和我們?nèi)绾伪容^它們的大小呢?我們知道對(duì)兩個(gè)實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號(hào)來決定兩個(gè)數(shù)的大小關(guān)系.生:(板演)設(shè),是(-∞,+∞)上任意兩個(gè)自變量,當(dāng)時(shí),,所以f(x)是增函數(shù).師:他的證明思路是清楚的.一開始設(shè),是(-∞,+∞)內(nèi)任意兩個(gè)自變量,并設(shè)(邊說邊用彩色粉筆在相應(yīng)的語(yǔ)句下劃線,并標(biāo)注“①→設(shè)”),然后看,這一步是證明的關(guān)鍵,再對(duì)式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么<0,沒有用到開始的假設(shè)“”,不要以為其顯而易見,在這里一定要對(duì)變形后的式子說明其符號(hào).應(yīng)寫明“因?yàn)閤1<x2,所以,從而<0,即.”這一步可概括為“定符號(hào)”(在黑板上板演,并注明“③→定符號(hào)”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).這就是我們用定義證明函數(shù)增減性的四個(gè)步驟,請(qǐng)同學(xué)們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以小.(對(duì)學(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢(shì).在學(xué)生剛剛接觸一個(gè)新的知識(shí)時(shí),思維定勢(shì)對(duì)理解知識(shí)本身是有益的,同時(shí)對(duì)學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.師:你的結(jié)論是什么呢?上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).生乙:我有不同的意見,我認(rèn)為這個(gè)函數(shù)不是整個(gè)定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),顯然成立,而,,顯然有,而不是,因此它不是定義域內(nèi)的減函數(shù).生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個(gè)單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個(gè)單調(diào)增(減)區(qū)間之間不要用符號(hào)“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫成閉區(qū)間.上是減函數(shù).(教師巡視.對(duì)學(xué)生證明中出現(xiàn)的問題給予點(diǎn)拔.可依據(jù)學(xué)生的問題,給出下面的提示:(1)分式問題化簡(jiǎn)方法一般是通分.(2)要說明三個(gè)代數(shù)式的符號(hào):k,,.要注意在不等式兩邊同乘以一個(gè)負(fù)數(shù)的時(shí)候,不等號(hào)方向要改變.對(duì)學(xué)生的解答進(jìn)行簡(jiǎn)單的分析小結(jié),點(diǎn)出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)

四、課堂小結(jié)師:請(qǐng)同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?(請(qǐng)一個(gè)思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語(yǔ);在寫單調(diào)區(qū)間時(shí)不要輕易用并集的符號(hào)連接;最后在用定義證明函數(shù)的單調(diào)性時(shí),應(yīng)該注意證明的四個(gè)步驟.

五、作業(yè)1.課本P53練習(xí)第1,2,3,4題.?dāng)?shù)..(*)+b>0.由此可知(*)式小于0,即.

課堂教學(xué)設(shè)計(jì)說明函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用.對(duì)學(xué)生來說,函數(shù)的單調(diào)性早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學(xué)生對(duì)此有一定的感性認(rèn)識(shí),對(duì)概念的理解有一定好處,但另一方面學(xué)生也會(huì)覺得是已經(jīng)學(xué)過的知識(shí),感覺乏味.因此,在設(shè)計(jì)教案時(shí),加強(qiáng)了對(duì)概念的分析,希望能夠使學(xué)生認(rèn)識(shí)到看似簡(jiǎn)單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.另外,對(duì)概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對(duì)概念的深入的正確的理解往往是學(xué)生認(rèn)知過程中的難點(diǎn).因此在本教案的設(shè)計(jì)過程中突出對(duì)概念的分析不僅僅是為了分析函數(shù)單調(diào)性的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論