2023-2024學年安徽省數(shù)學九上期末考試試題含解析_第1頁
2023-2024學年安徽省數(shù)學九上期末考試試題含解析_第2頁
2023-2024學年安徽省數(shù)學九上期末考試試題含解析_第3頁
2023-2024學年安徽省數(shù)學九上期末考試試題含解析_第4頁
2023-2024學年安徽省數(shù)學九上期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年安徽省數(shù)學九上期末考試試題含解析注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.拋物線y=-(x-2)2+3,下列說法正確的是()A.開口向下,頂點坐標(2,3) B.開口向上,頂點坐標(2,-3)C.開口向下,頂點坐標(-2,3) D.開口向上,頂點坐標(-2,-3)2.如圖,以點O為位似中心,將△ABC放大得到△DEF,若AD=OA,則△ABC與△DEF的面積之比為()A.1:2 B.1:4 C.1:5 D.1:63.如圖,已知DE∥BC,CD和BE相交于點O,S△DOE:S△COB=4:9,則AE:EC為()A.2:1 B.2:3 C.4:9 D.5:44.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數(shù)表達式為()A.B.C.D.5.如果一個扇形的弧長是π,半徑是6,那么此扇形的圓心角為()A.40° B.45° C.60° D.80°6.如圖,△ABC的內切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.97.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件8.如圖,在高2m,坡角為30°的樓梯表面鋪地毯,地毯的長度至少需要()A.2m B.(2+2)m C.4m D.(4+2)m9.如圖,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分別切邊AB,AD于點E,F(xiàn),且圓心O好落在DE上.現(xiàn)將⊙O沿AB方向滾動到與BC邊相切(點O在ABCD的內部),則圓心O移動的路徑長為()A.2 B.4 C.5﹣ D.8﹣210.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(

)A.35° B.45° C.55° D.65°二、填空題(每小題3分,共24分)11.反比例函數(shù)y=的圖象經(jīng)過點(﹣2,3),則k的值為_____.12.分解因式:2x2﹣8=_____________13.一個圓柱的三視圖如圖所示,若其俯視圖為圓,則這個圓柱的體積為__________.14.將二次函數(shù)的圖像向下平移個單位后,它的頂點恰好落在軸上,那么的值等于__________.15.如圖,菱形的頂點在軸正半軸上,頂點的坐標為,以原點為位似中心、在點的異側將菱形縮小,使得到的菱形與原菱形的相似比為,則點的對應點的坐標為________.16.編號為2,3,4,5,6的乒乓球放在不透明的袋內,從中任抽一個球,抽中編號是偶數(shù)的概率是___.17.因式分解:_______;18.從數(shù)﹣2,﹣,0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若k=mn,則正比例函數(shù)y=kx的圖象經(jīng)過第三、第一象限的概率是_____.三、解答題(共66分)19.(10分)如圖,在A港口的正東方向有一港口B.某巡邏艇從A港口沿著北偏東60°方向巡邏,到達C處時接到命令,立刻在C處沿東南方向以20海里/小時的速度行駛2小時到達港口B.求A,B兩港之間的距離(結果保留根號).20.(6分)如圖,在直角坐標系中,點B的坐標為,過點B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點E,F.(1)求直線EF的解析式.(2)求四邊形BEOF的面積.(3)若點P在y軸上,且是等腰三角形,請直接寫出點P的坐標.21.(6分)如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.(1)求證:PE是⊙O的切線;(2)求證:DE平分∠BEP;(3)若⊙O的半徑為10,CF=2EF,求BE的長.22.(8分)已知:如圖,B,C,D三點在上,,PA是鈍角△ABC的高線,PA的延長線與線段CD交于點E.(1)請在圖中找出一個與∠CAP相等的角,這個角是;(2)用等式表示線段AC,EC,ED之間的數(shù)量關系,并證明.23.(8分)計算:(1)sin260°﹣tan30°?cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°24.(8分)已知二次函數(shù)的圖象經(jīng)過點.(1)求這個函數(shù)的解析式;(2)畫出它的簡圖,并指出圖象的頂點坐標;(3)結合圖象直接寫出使的的取值范圍.25.(10分)如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;(2)畫出△A1B1C1繞原點順時針旋90°后得到的△A2B2C2;(3)若△A′B′C′與△ABC是中心對稱圖形,則對稱中心的坐標為.26.(10分)如圖,AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判斷直線CD與⊙O的位置關系,并說明理由;(2)若⊙O的半徑為1,求圖中陰影部分的面積(結果保留π).

參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)拋物線的解析式,由a的值可得到開口方向,由頂點式可以得到頂點坐標.【詳解】解:∵y=-(x-2)2+3∴a=-1<0,拋物線的開口向下,頂點坐標(2,3)故選A本題考查二次函數(shù)的性質,解題的關鍵是根據(jù)二次函數(shù)的解析式可以得到開口方向、對稱軸、頂點坐標等性質.2、B【解析】試題分析:利用位似圖形的性質首先得出位似比,進而得出面積比.∵以點O為位似中心,將△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC與△DEF的面積之比為:1:1.故選B.考點:位似變換.3、A【解析】試題解析:∵ED∥BC,故選A.點睛:相似三角形的性質:相似三角形的面積比等于相似比的平方.4、A【分析】先確定拋物線y=x2的頂點坐標為(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后所得對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.

故選A.5、A【解析】試題分析:∵弧長,∴圓心角.故選A.6、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設⊙O的半徑為r,利用面積法求出r的值即可求得答案.【詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.本題考查了三角形的內切圓,勾股定理的逆定理,正方形判定與性質,面積法等,正確把握相關知識是解題的關鍵.7、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.8、B【解析】如圖,由平移的性質可知,樓梯表面所鋪地毯的長度為:AC+BC,∵在△ABC中,∠ACB=90°,∠BAC=30°,BC=2m,∴AB=2BC=4m,∴AC=,∴AC+BC=(m).故選B.點睛:本題的解題的要點是:每階樓梯的水平面向下平移后剛好與AC重合,每階樓梯的豎直面向右平移后剛好可以與BC重合,由此可得樓梯表面所鋪地毯的總長度為AC+BC.9、B【分析】如圖所示,⊙O滾過的路程即線段EN的長度.EN=AB-AE-BN,所以只需求AE、BN的長度即可.分別根據(jù)AE和BN所在的直角三角形利用三角函數(shù)進行計算即可.【詳解】解:連接OE,OA、BO.∵AB,AD分別與⊙O相切于點E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.設當運動停止時,⊙O′與BC,AB分別相切于點M,N,連接O′N,O′M.同理可得,∠BO′N為30°,且O′N為,∴BN=O′N?tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滾過的路程為2.故選:B.本題考查了切線的性質,平行四邊形的性質及解直角三角形等知識.關鍵是計算出AE和BN的長度.10、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.二、填空題(每小題3分,共24分)11、-1【解析】將點(?2,3)代入解析式可求出k的值.【詳解】把(?2,3)代入函數(shù)y=中,得3=,解得k=?1.故答案為?1.主要考查了用待定系數(shù)法求反比例函數(shù)的解析式.先設y=,再把已知點的坐標代入可求出k值,即得到反比例函數(shù)的解析式.12、2(x+2)(x﹣2)【分析】先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).考核知識點:因式分解.掌握基本方法是關鍵.13、【分析】由已知三視圖為圓柱,首先得到圓柱底面半徑,從而根據(jù)圓柱體積=底面積乘高求出它的體積.【詳解】解:由三視圖可知圓柱的底面直徑為4,高為6,

∴底面半徑為2,

∴V=πr2h=22×6?π=24π,

故答案是:24π.此題考查的是圓柱的體積及由三視圖判斷幾何體,關鍵是先判斷圓柱的底面半徑和高,然后求其體積.14、1【分析】利用平移的性質得出平移后解析式,進而得出其頂點坐標,再代入直線y=0求出即可.【詳解】y=x2-2x+2=(x-1)2+1,

∴將拋物線y=x2-2x+2沿y軸向下平移1個單位,使平移后的拋物線的頂點恰好落在x軸上,

∴m=1,

故答案為:1.此題考查二次函數(shù)的性質,二次函數(shù)的平移,正確記憶二次函數(shù)平移規(guī)律是解題關鍵.15、【分析】先求得點C的坐標,再根據(jù)如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應點的坐標的比等于或進行解答.【詳解】菱形的頂點的坐標為,;過點作,如圖,,,在和中,,∴,,,∴點C的坐標為,以原點為位似中心、在點的異側將菱形縮小,使得到的菱形與原菱形的相似比為,,則點的對應點的坐標為.故答案為:.本題考查了位似變換:位似圖形與坐標,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應點的坐標的比等于或.16、.【解析】直接利用概率公式求解可得.【詳解】在這5個乒乓球中,編號是偶數(shù)的有3個,所以編號是偶數(shù)的概率為,故答案為:.本題考查了概率公式,關鍵是掌握隨機事件的概率事件可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).17、(a-b)(a-b+1)【解析】原式變形后,提取公因式即可得到結果.【詳解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),

故答案為:(a-b)(a-b+1)此題考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.18、【解析】從數(shù)﹣2,﹣,1,4中任取1個數(shù)記為m,再從余下,3個數(shù)中,任取一個數(shù)記為n.根據(jù)題意畫圖如下:共有12種情況,由題意可知正比例函數(shù)y=kx的圖象經(jīng)過第三、第一象限,即可得到k=mn>1.由樹狀圖可知符合mn>1的情況共有2種,因此正比例函數(shù)y=kx的圖象經(jīng)過第三、第一象限的概率是.故答案為.三、解答題(共66分)19、A,B間的距離為(20+20)海里.【分析】過點C作CD⊥AB于點D,根據(jù)題意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根據(jù)銳角三角函數(shù)即可求出A,B間的距離.【詳解】解:如圖,過點C作CD⊥AB于點D,根據(jù)題意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD?tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B間的距離為(20+20)海里.本題考查了解直角三角形的應用-方向角問題,解題的關鍵是掌握方向角的定義.20、(1);(2)1;(3)點P的坐標為或.【分析】(1)點E與點B的縱坐標相同,點F與點B的橫坐標相同,分別將y=1,x=2代入反比例函數(shù)解析式,可求出E、F的坐標,然后采用待定系數(shù)法即可求出直線EF的解析式;(2)利用即可求出答案;(3)設P點坐標為(0,m),分別討論OP=OE,OP=PE,OE=PE三種情況,利用兩點間的距離公式求出m即可得到P點坐標.【詳解】解:(1)軸,軸,將代入,得將代入得:,設直線EF的解析式為把E、F的坐標代入解得∴直線EF的解析式為(2)由題意可得:=1(3)設P點坐標為(0,m),∵E(1,1),∴,,①當OP=OE時,,解得,∴P點坐標為或②當OP=PE時,,解得∴P點坐標為③當OE=PE時,,解得,當m=0時,P與原點重合,不符合題意,舍去,∴P點坐標為綜上所述,點P的坐標為或本題考查了反比例函數(shù)的圖象與性質,待定系數(shù)法求一次函數(shù)解析式,以及等腰三角形的性質,熟練掌握待定系數(shù)法求函數(shù)解析式和兩點間的距離公式并進行分類討論是解題的關鍵.21、(1)見解析;(2)見解析;(3)BE=1.【分析】(1)如圖,連接OE.欲證明PE是⊙O的切線,只需推知OE⊥PE即可;(2)由圓周角定理得到,根據(jù)“同角的余角相等”推知,結合已知條件證得結論;(3)設,則,由勾股定理可求EF的長,即可求BE的長.【詳解】(1)如圖,連接OE.∵CD是圓O的直徑,∴.∵,∴.又∵,即,∴,∴,即,∴,又∵點E在圓上,∴PE是⊙O的切線;(2)∵AB、CD為⊙O的直徑,∴,∴(同角的余角相等).又∵,∴,即ED平分∠BEP;(3)設,則,∵⊙O的半徑為10,∴,在Rt△OEF中,,即,解得,∴,∴.本題考查了圓和三角形的幾何問題,掌握切線的性質、圓周角定理和勾股定理是解題的關鍵.22、(1)∠BAP;(2)AC,EC,ED滿足的數(shù)量關系:EC2+ED2=2AC2.證明見解析.【分析】(1)根據(jù)等腰三角形?ABC三線合一解答即可;(2)連接EB,由PA是△CAB的垂直平分線,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA.然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=BD2,找到BD2=2AB2,代入可求的EC2+ED2=2AC2的等量關系即可.【詳解】(1)∵等腰三角形?ABC且PA是鈍角△ABC的高線∴PA是∠CAB的角平分線∴∠CAP=∠BAP(2)AC,EC,ED滿足的數(shù)量關系:EC2+ED2=2AC2.證明:連接EB,與AD交于點F∵點B,C兩點在⊙A上,∴AC=AB,∴∠ACP=∠ABP.∵PA是鈍角△ABC的高線,∴PA是△CAB的垂直平分線.∵PA的延長線與線段CD交于點E,∴EC=EB.∴∠ECP=∠EBP.∴∠ECP—∠ACP=∠EBP—∠ABP.即∠ECA=∠EBA.∵AC=AD,∴∠ECA=∠EDA∴∠EBA=∠EDA∵∠AFB=∠EFD,∠BCD=45°,∴∠AFB+∠EBA=∠EFD+∠EDA=90°即∠BAD=∠BED=90°∴EB2+ED2=BD2.∵BD2=AB2+AD2,∴BD2=2AB2,∴EB2+ED2=2AB2,∴EC2+ED2=2AC2本題考查了圓的性質、等腰三角形的性質以及勾股定理,這是一個綜合題,注意數(shù)形結合.23、(1);(2)2.【解析】根據(jù)特殊角的銳角三角函數(shù)的值即可求出答案.【詳解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2本題考查了銳角三角函數(shù)的定義,解題的關鍵是熟練運用特殊角的銳角三角函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論