2023-2024學年浙江省杭州市七縣市高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023-2024學年浙江省杭州市七縣市高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023-2024學年浙江省杭州市七縣市高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023-2024學年浙江省杭州市七縣市高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023-2024學年浙江省杭州市七縣市高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年浙江省杭州市七縣市高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是上的減函數(shù),當最小時,若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.2.已知為銳角,且,則等于()A. B. C. D.3.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.4.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值5.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.6.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④7.已知向量,,則向量在向量上的投影是()A. B. C. D.8.中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.9.設正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.3610.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.閱讀下側程序框圖,為使輸出的數(shù)據(jù)為31,則①處應填的數(shù)字為A.4 B.5 C.6 D.712.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.西周初數(shù)學家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個數(shù)中隨機抽取3個數(shù),則這3個數(shù)能構成勾股數(shù)的概率為__________.14.兩光滑的曲線相切,那么它們在公共點處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______15.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.16.在中,內(nèi)角的對邊分別是,若,,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.18.(12分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中19.(12分)已知函數(shù),,且.(1)當時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實數(shù)根;(3)若方程的兩個實數(shù)根是,試比較,與的大小,并說明理由.20.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設直線,的斜率分別為,,求證:常數(shù);(2)①設的內(nèi)切圓圓心為的半徑為,試用表示點的橫坐標;②當?shù)膬?nèi)切圓的面積為時,求直線的方程.21.(12分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點,且滿足>1,求實數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數(shù)a的最大值.22.(10分)棉花的纖維長度是評價棉花質(zhì)量的重要指標,某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取21根棉花纖維進行統(tǒng)計,結果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過1.125的前提下認為“纖維長度與土壤環(huán)境有關系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當最小時,,之后將函數(shù)零點個數(shù)轉化為函數(shù)圖象與直線交點的個數(shù)問題,畫出圖形,數(shù)形結合得到結果.【詳解】由于為上的減函數(shù),則有,可得,所以當最小時,,函數(shù)恰有兩個零點等價于方程有兩個實根,等價于函數(shù)與的圖像有兩個交點.畫出函數(shù)的簡圖如下,而函數(shù)恒過定點,數(shù)形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數(shù)的問題,涉及到的知識點有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,數(shù)形結合思想的應用,屬于中檔題目.2、C【解析】

由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎題.3、C【解析】

由題得,,又,聯(lián)立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關計算,考查了學生的計算能力.4、B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.5、D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.6、C【解析】

根據(jù)線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內(nèi)過點作直線的垂線,則直線,又因為,設經(jīng)過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎題.7、A【解析】

先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.8、B【解析】

根據(jù)題意表示出各位上的數(shù)字所對應的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.9、B【解析】

方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.10、B【解析】

根據(jù)誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.11、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.12、D【解析】

根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由組合數(shù)結合古典概型求解即可【詳解】從11個數(shù)中隨機抽取3個數(shù)有種不同的方法,其中能構成勾股數(shù)的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數(shù)學文化,考查組合問題,數(shù)據(jù)處理能力和應用意識.14、【解析】

第一空:將圓與聯(lián)立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯(lián)立,得到,與結合可得為等差數(shù)列,進而可得.【詳解】當r1=1時,圓,與聯(lián)立消去得,則,解得;由圖可知當時,①,將與聯(lián)立消去得,則,整理得,代入①得,整理得,則.故答案為:;.【點睛】本題是拋物線與圓的關系背景下的數(shù)列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.15、32【解析】

由已知可得抽取的比例,計算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總人數(shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎題.16、【解析】

由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內(nèi)角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,.【解析】

(1)根據(jù)離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設,,聯(lián)立方程組利用韋達定理得到,,根據(jù)化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關于軸對稱,則直線與直線的斜率之和為零,與題設條件矛盾,故直線的斜率不為0.設,,直線的方程為聯(lián)立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關鍵,意在考查學生的計算能力和轉化能力.18、,概率為;列聯(lián)表詳見解析,有的把握認為交通安全意識與性別有關;.【解析】

根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結論;用分層抽樣法求得抽取各分數(shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強安全意識不強合計男性女性合計所以有的把握認為交通安全意識與性別有關.由題意可知分數(shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點睛】本題考查獨立性檢驗應用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.19、(1)(2)詳見解析(3)【解析】

試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數(shù)根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實數(shù)根;(3)因為,,又在和增,在減,所以.考點:利用導數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關系20、(1)證明見解析;(2)①;②.【解析】

(1)設過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設出直線方程,求出交點坐標,因為內(nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯(lián)立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設內(nèi)切圓半徑為,則.設直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關的綜合問題的求解,考查了學生的運算求解與邏輯推理能力.21、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】

(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點與所研究的區(qū)間的大小關系來進行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數(shù)的最值,得到a≤,再利用導數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導,才可確定函數(shù)單調(diào)性,進而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當t≥1時,f(x)在[t,t+1]上單調(diào)遞增,f(x)的最小值為f(t)=t-lnt;當0<t<1時,f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t+1)上為增函數(shù),f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(huán)(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論