《計算機視覺-王偉強》Course9_第1頁
《計算機視覺-王偉強》Course9_第2頁
《計算機視覺-王偉強》Course9_第3頁
《計算機視覺-王偉強》Course9_第4頁
《計算機視覺-王偉強》Course9_第5頁
已閱讀5頁,還剩147頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ComputerVisionII

BuildingRomeinaDay

Recall

?Fundamentalmatrixsong

?http:〃/fmrtrix/

?RANSACsong

How?

MCOHOcomoM

MultipleViewReading:theMVGbible

Geometry

incomputervision(need~2years)

Crying:NotWorkingAtAll

II

+

+

UOD

-O-U

1。①-

IO①P

IA①」IO

一OJOA

uS-uI

ojmdP

jdB

j①OJUOBS

>EI

①IAe

」q

n①—

-iz①B

d①-」

-uAPf

rn-OqbeJO

lulIxu

sAA①-J

sII一

d

①:s

t

s一os:s:

-以--

sd①①

l①pP

u①|(zhì)一|oO

o」S/I

d0①|(zhì)\IA

2ai

個i個

s個ss

①ss①①

luI一

bjeouo8ODe

loAIE

_uddI_

+

U

-O

1。OUD

IO①-

A」①

I①P

ES一OuJOIO

omd-IA

^①ODUBdP

IB

s>EAS

n①Ie

-iz①q

d-」

R①r—①

-ru-Pn

unIOx

slAlA①bjeo

sII一l

d_u

①s:

l

s一u

一o

sd以±①5±①i

l①PP

u①|(zhì)一OO

o」SAII

d0①IIA

5ai

i個

s個ss

①ss①①

luq

bjeousbjo

loo①e

工E

_udd_

+

OU

-。OUD

O1①-

」①

AI①P

I一O

ESOuJOAI

omd-I

①dP

^ODUBB

>EIS

sIAe

n①q

d-iz-①—

-R①r」①

-runOPn

ulIxbjeo

slIAA①l

sI一

d_u

①s:

l

一u

so

s一d±①5±①i

l①①PP

一OO

u」|I

o0SAIA

d①II

5ai

i個

個ss

ss①①

①lsq

us

bjouobjeo

leo①E

dd工_

-u

+

U

-O

。OD

1-U

IO①-

」①

IA①P

一O

ESOuJOAI

omd-I

^①ODdP

UIBB

s>EAS

Ie

n①q

-iz-①

d」—

R①r①

-run-OPn

ulIxbjo

slAA①le

sII一

d_u

①s:

l+

一u

so

s一d±①5±①i

l①PP

u①一OO

o」S|II

d0①IAIA+

5ai

個i

s個ss

①ss①①

luq

bjousbjeo+

leoo①E

-udd工_

+

U

-O

1。OUD

IO①-

A」①

I①P

U一OJOO

JSuAI

Omd-I

J」①ODUBdP

IB

s>EAS

n①Ie

-iz①q

d-」

R①r—①

-ru-Pn

unIOx

slAlA①bjeo

sII一l

d_u

①s:

l

s一u

一o

sd以±①5±①i

l①PP

u①|(zhì)一OO

o」SAII

d0①IIA

5ai

i個

s個ss

①ss①①

luq

bjeousbjo

loo①e

工E

_udd_

+

U

-O

1。OUD

IO①-

A」①

I①P

ES一OuJOIO

omd-IA

^①ODUBdP

IB

s>EAS

n①Ie

-iz①q

d-」

R①r—①

-ru-Pn

unIOx

slAlA①OJeO

sII一l

d-u

①s:

l

s一u

一o

sd以±①5:

l①P-s

u①|(zhì)一O①

o」SIP

d0①IAO

5aiAI

i個I

ss個

①ss①

luqs

bjeous①

loo①

udd工bjeo

_E

_

+

U

OOD

--U

1。-

IO①①

IA①」OP

U一OJOAI

JS-uI

OmdP

J」①ODUBdB

IS

s>EAe

n①Iq

-iz①—

d-」B

-uR①r

ur-OPn

llnIxOeJO

sAA①ul

sII一-

d

①s:

l

s一u

一o

以:

sd±①5s

l①P-①

u①|(zhì)一OP

o」SAIO

d0①IAI

5aiI

i個

s個s

①ss①s

luq①

bjeous

loo①bjeo

udd工E

__

+

Image-basedModeling

InputImages

Image-basedModeling

U

-O

1。OUD

IO①-

A」①

I①P

ES一OuJOIO

omd-IA

^①ODUBdP

IB

s>EAS

n①Ie

-iz①q

d-」

R①r—①

-ru-Pn

unIOx

slAlA①bjeo

sII一l

d_u

①s:

l

s一u

一o

sd以±①5±①i

l①PP

u①|(zhì)一OO

o」SAII

d0①IIA

5ai

i個

s個ss

①ss①①

luq

bjeousbjo

loo①e

工E

_udd_

+

U

OODU

-。-

1①-

O①

I」

A①P

O

I一

SI

lOuJOA

umd-I

oP

①OJuOd

」BB

J-

>IS

①HA

Ie

」①

nq

-iz-①—

d①

A」①

-Pr

-runOn

ulIxOJeO

lAAu

sII①J

s一

d-

①s:

l

s一u

o4s:

-d-s:

s①①-

①iP①

l|OP

u」SIO

o0①AI

i

d2aIA

iI

s

sss①s

①l①

l一

uuI

bjeoo8

loIODe

uddAE

_I_

+

U

-O

1。OUD

IO①-

A」①

I①P

ES一OuJOIO

omd-IA

^①ODUBdP

IB

s>EAS

n①Ie

-iz①q

d-」

R①r—①

-ru-Pn

unIOx

slAlA①OJeO

sII一l

d-u

①s:

l

s一u

一o

sd以±①5:

l①P-s

u①|(zhì)一O①

o」SIP

d0①IAO

5aiAI

i個I

ss個

①ss①

luqs

bjeous①

loo①

udd工bjeo

_E

_

+

StructureFromMotion

?Structure=3DPointCloudoftheScene

?Motion=CameraLocationandOrientation

?SFM=GetthePointCloudfromMovingCameras

?StructureandMotion:JointProblemstoSolve

Pipeline

StructurefromMotion(SFM)Multi-viewStereo(MVS)

Pipeline

StructurefromMotion(SFM)Multi-viewStereo(MVS)

Two-viewReconstruction

Two-viewReconstruction

Two-viewReconstruction

keypoints

fundamentalessential

match[R|t]triangulation

matrixmatrix

keypoints

KeypointsDetection

keypoints

fundamentalessential

match[R|t]triangulation

matrixmatrix

keypoints

Descriptorforeachpoint

SIFT

descriptor

SIFT

descriptor

keypoints

4,fundamentalessential

match?[R|t]triangulation

matrixmatrix

keypoints

Samefortheotherimages

SIFT

descriptor

SIFT

descriptor

keypoints

-,fundamentalessential-4...

match[Rt]triangulation

matrixmatrix

keypoints

PointMatchforcorrespondences

keypoints

fundamentalessential-4...

match[Rt]triangulation

matrixmatrix

keypoints

PointMatchforcorrespondences

keypoints

fundamentalessential-4...

match[Rt]triangulation

matrixmatrix

keypoints

FundamentalMatrix

X]ox2

X^FX2=0

Exercise

WhatisthedifferencebetweenFundamentalMatrixandHomography?

(Bothofthemaretoexplain2Dpointto2Dpointcorrespondences.)

EstimatingFundamentalMatrix

?Givenacorrespondence

X]—x,

?Thebasicincidencerelationis「

X;RX,二O卜/2,不必,再,必工2,必必,如%2,%1]f?2=。

Need8points,

EstimatingFundamentalMatrix

x;Rx,=0for8pointcorrespondences:

fn

]

x\x\“1%X;必“2y\y\乂x\y21

fl2

小;片泡諭xl1

.713

X:y渴y'ylx|1Ax=b

fl\

九:血1

,22=0Af=0

y"x2y"1

工1工2七%X:,23

X%X泗X;y\xi1

77

Xx

xxx2;1y"2x\1

Ky.力2

8X8

Xx\1

人1人2X:工3

DirectLinearTransformation(DLT)

AlgebraicErrorvs.GeometricError

?AlgebraicError

min||Af||

?GeometricError(better)Unit:pixel

Solvedby(non-linear)leastsquaresolver(e.g.Ceres)

RANSACtoEstimateFundamentalMatrix

?Formanytimes

一Pick8points

一Computeasolutionforpausingthese8points

一Countnumberofinliersthatwithcloseto0

12

?Picktheonewiththelargestnumberofinliers

MinimalproblemsinComputerVision

CenterforMachinePerception

MinimalproblemsinComputerVision

cmp.felk.cvut.cz/minimal/

Overview

?P4P?unknownfocallength

?P4P?focal?radialdistortionMinimalproblemsincomputervisionarisewhencomputinggeometricalmodelsfromimagedata.

Theyoftenleadtosolvingsystemsofalgebraicequations.

?uP2P.knownverticaldirection

?uP3P+foal?radialdtotortionThispageprovideslinkstopublications,software,data,andevaluationofminimalproblems.

?P2PlLprobtam

NEW:

?PlP2Lproblem

ACCV2010

?5-ptrelativeposeproblem

BujnakM”KukelovaZ.,PajdlaT.,Newefficientsolutiontotheabsoluteposeproblemforcamerawithunknownfocallengthandradial

?6-ptfocaltengthproblemdistortion,ACCV2010,Queenstown,NZ,November8-12,2010.FodH

?caNbrated-uncaRbratedCODE:

4~oolrnabsoluteposeorobtemwithunknownfocallenathandradialdistortion(P4Pfr)

?4-pt3-view*ralathmpoMprobtem

?2-ptpanoramastitching(1focal)KukelovaZ.tBujnakM.,PajdlaT.,Gosed-formsolutionstotheminimalabsoluteposeproblemswithknownverticaldirection,ACCV2010,

Queenstown,NZ,November8-12,2010.(',]

?3-ptpanoramastitching(2locate)CODE:

?3>ptpanoramastitching(1focal*2jxMntabsoluteooseprobiemwithknownverticaldirection(up2p)

rod*dtotortfcxO3~pointabsolutegseproblemwithknownverticaldirectionandunknownfocallengthandradialdistortion(uD3pfr)

?Aptgenerattzedcameraproblem

*6>ptcaNbratedradtoldtotortionSOURCECODESTOSEVERALMINIMALPROBLEMS

4PoimabsoluteooseDroblemwithunknownfocallenqS(P4Pf)(newfastM^tlabversion)

?8*ptuncaHbratedradialdistortion8-point"uncatibrated"retiDoseDroblemwithradialdistortion

?9-ptdWtrentdistortionprobtam4~oointabsoluteposeDroblemwithunknownfocallenathandradialdistortion(P4Pfr)

2-pointabsoluteDoseDroblcmwithknownvertiTdirection(UD2D)

?P2flregistrationproblem3-oolntabsoluteooseDroblemwithknownverticaldirectionyidunknownfocallenathandradialdistortion(uo3Dfr)

?3-vtewtrlangulatton

?9-ptcatadioptric

3oolntlute?orobiem(P3P)

?Hand-?ye4?pointobsoluteposewigunknownfocallend由(P4P「)NEWFASTMATLABSOURCECODE

?Automaticgenerator4-pointabsoluteDoseoroblemwithunknownfocallenathandrad@distortion3口/NEW.

2pomiabsoluteposeproblemwithknownverticaldirection(UD2D)NEW

?Grobenerbasissolver

3~oointluteooseDroblOTiwithknownverticaldirectionandunknownfocallength3ndradialdistortion(uo3Dfr)NEW

http://cmp.felk.cvut.cz/minimal/

FundamentalMatrix->EssentialMatrix

X^FX2=0

E=K?FK?

區(qū)232

EssentialMatrixfRt

E=K?FK?

區(qū)2肯2

EssentialMatrix|_Rt_

Result9.19.Foragivenessentialmatrix

r

E=Udiag(l5l90)V?

andthefirstcameramatrixtherearefour

possiblechoicesforthesecondcameramatrixP2:

r

P2=[uWV|+u3

P=[lJWVr|-u

230-10

rr

P2=[uWV|+u3W=100

001

rr

P2=[uWV|-u3

Page259ofthebible(MultipleViewGeometry,2ndEd)

FourPossibleSolutions

(d)

Fig.9.12.ThefourpossiblesolutionsfbrcalibratedreconstructionfromE.Betweentheleftand

rightsidesthereisabaselinereversal.BetweenthetopandbottomrowscameraBrotates180°about

thebaseline.Note,onlyin(a)isthereconstructedpointinfrontofbothcameras.

Page260ofthebible(MultipleViewGeometry,2ndEd)

Triangulation

Infrontofthecamera?

CameraExtrinsic[R|t

?CameraCenter

—R『t二—R't

?ViewDirection

-(C)=(R(3,:)r-Rrt)-(-Rrt)=R(3,:)r

CameraCoordinateSystemWorldCoordinateSystem

Infrontofthecamera?

?Apointx

?DirectionfromcameracentertopointX-C

?AngleBetweenTwoVectors

A?B=ABcos。

?AngleBetweenx-CandViewDirection

?Justneedtotest

(X-C)?R(3,:y〉0?

PicktheSolution

Withmaximalnumberofpointsinfrontofbothcameras.

Fig.9.12.ThefourpossiblesolutionsforcalibratedreconstructionfromE.Betweentheleftand

rightsidesthereisabaselinereversal.BetweenthetopandbottomrowscameraBrotates1800about

thebaseline.Note,onlyin(a)isthereconstructedpointinfrontofbothcameras.

Page260ofthebible(MultipleViewGeometry,2ndEd)

Two-viewReconstruction

keypoints

fundamentalessential

match[R|t]triangulation

matrixmatrix

keypoints

Pipeline

StructurefromMotion(SFM)Multi-viewStereo(MVS)

Pipeline

TaughtNext

MergeTwoPointCloud

*3

If

??**

TherecanbeonlyoneR2t2

MergeTwoPointCloud

?Fromthe1stand2ndimages,wehave

[Riand[R2|t2_

?Fromthe2ndand3rdimages,wehave

R2tandFR3L

?Exercise:Howtotransformthecoordinate

systemofthesecondpointcloudtoalignwith

thefirstpointcloudsothatthereisonlyone

?*

22

Oops

SeeFromaDifferentAngle

BundleAdjustment

“Iamveryverysexy"

Point1Point2Point3

1

Image1x;=Itjx襄;=也弭h

Si:'1jSSL-

Image23

寸=吆電芍=X^A=KTIL遙.遇t三Jx

k[R21tzL

Image3—ITD11Y1KRtlx3

Y=T.賽'__

V?一有]矍_.

RethinkingtheSFMproblem

?Input:Observed2Dimageposition

~1~2

&X]

支1X2克3

八2八2八2

?Output:X3X3

UnknownCameraParameters(withsomeguess)

[此4區(qū)也口憶

UnknownPoint3Dcoordinate(withsomeguess)

丫1丫2丫3

£》*造£Y

777

T叢【'uoneAJSsqo

裊¥

£X11|=;xMW、[x=:x]

£x[,『小=""|X「i|\]y=;xuoii39[ojd-9y

Mmr]x=;x|X"|,]x=;x

問isniu

-\x\x\xpue\'口『\]『1|、]U°!W|OSP!|BAV

luaiuisnrpva|pung

BundleAdjustment

3

Avalidsolution[K|tJC%12」,W3handX\X^X,

mustlettheRe-projectionclosetothe

Observation,i.e.tominimizethereprojection

error

72

minZZ("-K[Rz.|tz.]x)

ij

BundleAdjustment

3

Avalidsolution[K|tJC%12」,W3handX\X^X,

mustlettheRe-projectionclosetothe

Observation,i.e.tominimizethereprojection

error

72

minZZ("-K[Rz.|tz.]x)

ij

Question:Whatistheunitofthisobjectivefunction?

BundleAdjustment

Avalidsolution[K|tJC%周,恢3handX\X^X3,

mustlettheRe-projectionclosetothe

Observation,i.e.tominimizethereprojection

error

72

minZZ("-K[Rz.|tz.]x)

ij

Linking

SIFTMatchingSIFTMatching

SolvingThisOptimizationProblem

?Theory:

TheLevenberg-Marquardtalgorithm

http://en.wikipedia.or4/wiki/Levenberg-Marc1uvrdtalgorithm

?Practice:

TheCeres-SolverfromGoogle

http:〃code.及。。由/p/ceres-soker/

ParameterizingRotationMatrix

-sin(6>)x

cos(e)y

R7=R\detR=l

x

3DRotation

Yaw,pitchandrollare%0/

100

&(。)=0cos(^)-sin(0

0sin(6)cos(。)也伊((QK(a)

cos(6)0sin(。)

Ry(e)=0io

-sin(O)0cos(6)Euleranglesare

cos(0-sin⑹0

Rz=sin(0cos(^)0Rz仍R")R,(a)

001

/wiki/Rotationmatrix

3DRotation

Axis-anglerepresentationQuaternions

.(e\(州

vsin—,cos

<27\2J)

AvoidGimbalLock!

Recommendation!

TripletRepresentationv6(3dof)GNotover-parameterized

Rodrigues'rotationformula

kmz=kcos8+(vxk)sine+v(v-k)(l—cos。)

http:〃/wiki/Axis-anglerepresentation

http://en.wikipedi).orH/wiki/Quaternionsandspatialrotation

http://en.wikipedia.ore/wiki/Rodrigues%27rotationformula

InitializationMatters

~1~2

X]X]

(

?Input:Observed2Dimageposition-i-23

?*2X?A2

?Output:ji女;

UnknownCameraParameters(withsomeguess)

RltjRHJAh

UnknownPoint3Dcoordinate(withsomeguess)

Pipeline

TaughtNext

MultipleViewStereo

State-of-the-art:

PMVS:http:〃vrail.cs.washinR/softwar~e/pmvs/

Accurate,Dense,andRobustMulti-ViewStereopsis,YFurukawaandJPonce,2007.

Benchmark:

http:〃/mview/

AComparisonandEvaluationofMulti-ViewStereoReconstructionAlgorithms.

SMSeitz,BCurless,JDiebel,DScharstein,RSzeliski.2006.

Baseline:

Multi-viewstereorevisited.MGoesele.BCurless,SMSeitz.2006.

Keyidea:MatchingPropagation

[1]LearningTwo-viewStereoMatching,JXiao,JChen,DYYeung,andLQuan,2008.

[2]Accurate,Dense,andRobustMulti-ViewStereopsis,YFurukawaandJPonce,2007.

[3]Multi-viewstereorevisited.MGoesele,BCurless,SMSeitz.2006.

[4]RobustDenseMatchingUsingLocalandGlobalGeometricConstraints,MLhuillier&L

Quan,2000.

Inanothercontext:

[5]PatchMatch:ARandomizedCorrespondenceAlgorithmforStructuralImageEditing,

CBarnes,EShechtman,AFinkelstein,andDBGoldman,2009.

SimplestMatchingPropagation

Wearegoingtolearnaverysimplealgorithm

Descriptor:ZNCC(Zero-meanNormalizedCross-Correlation)

Invarianttolinearradiometricchanges

Moreconservativethanotherssuchassumofabsoluteorsquaredifferencesinuniformregions

Moretolerantintexturedareaswherenoisemightbeimportant

2^(/(x+i)-7(x))(/(x+i)-7(x))

*1122

ZNCC(X1,X2)

Descriptor:ZNCC(Zero-meanNormalizedCross-Correlation)

,Invarianttolinearradiometricchanges

,Moreconservativethanotherssuchassumofabsoluteorsquaredifferencesinuniformregions

,Moretolerantintexturedareaswherenoisemightbeimportant

2^(/(x1+i)-7(x1))(/(x2+i)-7(x2))

si

o

UOABuBdoJdpas

c

MatchingPropagation

?MaintainapriorityqueueQ

?Initialize:PutallseedsintoQwiththeirZNCC

valuesasscores

?Foreachiteration:

一PopthematchwithbestZNCCscorefromQ

—Addnewpotentialmatchesintheirimmediate

spatialneighborhoodintoQ

?Safety:handleuniqueness,andpropagate

onlyonmatchablearea

MatchableArea

theareawithmaximalgradience>threshold

l-ns①工

+

+

#

+++

++

+++

#++

孕>+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論