版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ComputerVisionII
BuildingRomeinaDay
Recall
?Fundamentalmatrixsong
?http:〃/fmrtrix/
?RANSACsong
How?
MCOHOcomoM
MultipleViewReading:theMVGbible
Geometry
incomputervision(need~2years)
Crying:NotWorkingAtAll
II
+
+
UOD
-O-U
1。①-
IO①P
IA①」IO
一OJOA
uS-uI
ojmdP
jdB
j①OJUOBS
>EI
①IAe
」q
n①—
-iz①B
d①-」
-uAPf
rn-OqbeJO
lulIxu
sAA①-J
sII一
d
①:s
t
s一os:s:
-以--
sd①①
l①pP
u①|(zhì)一|oO
o」S/I
d0①|(zhì)\IA
2ai
個
個i個
個
s個ss
①ss①①
luI一
bjeouo8ODe
loAIE
_uddI_
+
U
-O
1。OUD
IO①-
A」①
I①P
ES一OuJOIO
omd-IA
^①ODUBdP
IB
s>EAS
n①Ie
-iz①q
d-」
R①r—①
-ru-Pn
unIOx
slAlA①bjeo
sII一l
d_u
①s:
l
s一u
一o
sd以±①5±①i
l①PP
u①|(zhì)一OO
o」SAII
d0①IIA
5ai
個
個
i個
個
s個ss
①ss①①
luq
bjeousbjo
loo①e
工E
_udd_
+
OU
-。OUD
O1①-
」①
AI①P
I一O
ESOuJOAI
omd-I
①dP
^ODUBB
>EIS
sIAe
n①q
d-iz-①—
-R①r」①
-runOPn
ulIxbjeo
slIAA①l
sI一
d_u
①s:
l
一u
so
以
s一d±①5±①i
l①①PP
一OO
u」|I
o0SAIA
d①II
5ai
個
i個
個
個
個ss
ss①①
①lsq
us
bjouobjeo
leo①E
dd工_
-u
+
U
-O
。OD
1-U
IO①-
」①
IA①P
一O
ESOuJOAI
omd-I
^①ODdP
UIBB
s>EAS
Ie
n①q
-iz-①
d」—
R①r①
-run-OPn
ulIxbjo
slAA①le
sII一
d_u
①s:
l+
一u
so
以
s一d±①5±①i
l①PP
u①一OO
o」S|II
d0①IAIA+
5ai
個
個
個i
個
s個ss
①ss①①
luq
bjousbjeo+
leoo①E
-udd工_
+
U
-O
1。OUD
IO①-
A」①
I①P
U一OJOO
JSuAI
Omd-I
J」①ODUBdP
IB
s>EAS
n①Ie
-iz①q
d-」
R①r—①
-ru-Pn
unIOx
slAlA①bjeo
sII一l
d_u
①s:
l
s一u
一o
sd以±①5±①i
l①PP
u①|(zhì)一OO
o」SAII
d0①IIA
5ai
個
個
i個
個
s個ss
①ss①①
luq
bjeousbjo
loo①e
工E
_udd_
+
U
-O
1。OUD
IO①-
A」①
I①P
ES一OuJOIO
omd-IA
^①ODUBdP
IB
s>EAS
n①Ie
-iz①q
d-」
R①r—①
-ru-Pn
unIOx
slAlA①OJeO
sII一l
d-u
①s:
l
s一u
一o
sd以±①5:
l①P-s
u①|(zhì)一O①
o」SIP
d0①IAO
5aiAI
個
i個I
個
個
ss個
①ss①
luqs
bjeous①
loo①
udd工bjeo
_E
_
+
U
OOD
--U
1。-
IO①①
IA①」OP
U一OJOAI
JS-uI
OmdP
J」①ODUBdB
IS
s>EAe
n①Iq
-iz①—
d-」B
-uR①r
ur-OPn
llnIxOeJO
sAA①ul
sII一-
d
①s:
l
s一u
一o
以:
sd±①5s
l①P-①
u①|(zhì)一OP
o」SAIO
d0①IAI
5aiI
個
i個
個
個
s個s
①ss①s
luq①
bjeous
loo①bjeo
udd工E
__
+
Image-basedModeling
InputImages
Image-basedModeling
U
-O
1。OUD
IO①-
A」①
I①P
ES一OuJOIO
omd-IA
^①ODUBdP
IB
s>EAS
n①Ie
-iz①q
d-」
R①r—①
-ru-Pn
unIOx
slAlA①bjeo
sII一l
d_u
①s:
l
s一u
一o
sd以±①5±①i
l①PP
u①|(zhì)一OO
o」SAII
d0①IIA
5ai
個
個
i個
個
s個ss
①ss①①
luq
bjeousbjo
loo①e
工E
_udd_
+
U
OODU
-。-
1①-
O①
I」
A①P
O
I一
SI
lOuJOA
umd-I
oP
①OJuOd
」BB
J-
>IS
①HA
Ie
」①
nq
-iz-①—
d①
A」①
-Pr
-runOn
ulIxOJeO
lAAu
sII①J
s一
d-
①s:
l
s一u
o4s:
-d-s:
s①①-
①iP①
l|OP
u」SIO
o0①AI
i
d2aIA
iI
個
個
個
個
個
s
sss①s
①l①
l一
uuI
bjeoo8
loIODe
uddAE
_I_
+
U
-O
1。OUD
IO①-
A」①
I①P
ES一OuJOIO
omd-IA
^①ODUBdP
IB
s>EAS
n①Ie
-iz①q
d-」
R①r—①
-ru-Pn
unIOx
slAlA①OJeO
sII一l
d-u
①s:
l
s一u
一o
sd以±①5:
l①P-s
u①|(zhì)一O①
o」SIP
d0①IAO
5aiAI
個
i個I
個
個
ss個
①ss①
luqs
bjeous①
loo①
udd工bjeo
_E
_
+
StructureFromMotion
?Structure=3DPointCloudoftheScene
?Motion=CameraLocationandOrientation
?SFM=GetthePointCloudfromMovingCameras
?StructureandMotion:JointProblemstoSolve
Pipeline
StructurefromMotion(SFM)Multi-viewStereo(MVS)
Pipeline
StructurefromMotion(SFM)Multi-viewStereo(MVS)
Two-viewReconstruction
Two-viewReconstruction
Two-viewReconstruction
keypoints
fundamentalessential
match[R|t]triangulation
matrixmatrix
keypoints
KeypointsDetection
keypoints
fundamentalessential
match[R|t]triangulation
matrixmatrix
keypoints
Descriptorforeachpoint
SIFT
descriptor
SIFT
descriptor
keypoints
4,fundamentalessential
match?[R|t]triangulation
matrixmatrix
keypoints
Samefortheotherimages
SIFT
descriptor
SIFT
descriptor
keypoints
-,fundamentalessential-4...
match[Rt]triangulation
matrixmatrix
keypoints
PointMatchforcorrespondences
keypoints
fundamentalessential-4...
match[Rt]triangulation
matrixmatrix
keypoints
PointMatchforcorrespondences
keypoints
fundamentalessential-4...
match[Rt]triangulation
matrixmatrix
keypoints
FundamentalMatrix
X]ox2
X^FX2=0
Exercise
WhatisthedifferencebetweenFundamentalMatrixandHomography?
(Bothofthemaretoexplain2Dpointto2Dpointcorrespondences.)
EstimatingFundamentalMatrix
?Givenacorrespondence
X]—x,
?Thebasicincidencerelationis「
X;RX,二O卜/2,不必,再,必工2,必必,如%2,%1]f?2=。
Need8points,
EstimatingFundamentalMatrix
x;Rx,=0for8pointcorrespondences:
fn
]
x\x\“1%X;必“2y\y\乂x\y21
fl2
小;片泡諭xl1
.713
X:y渴y'ylx|1Ax=b
fl\
九:血1
,22=0Af=0
y"x2y"1
工1工2七%X:,23
X%X泗X;y\xi1
77
Xx
xxx2;1y"2x\1
Ky.力2
8X8
Xx\1
人1人2X:工3
DirectLinearTransformation(DLT)
AlgebraicErrorvs.GeometricError
?AlgebraicError
min||Af||
?GeometricError(better)Unit:pixel
Solvedby(non-linear)leastsquaresolver(e.g.Ceres)
RANSACtoEstimateFundamentalMatrix
?Formanytimes
一Pick8points
一Computeasolutionforpausingthese8points
一Countnumberofinliersthatwithcloseto0
12
?Picktheonewiththelargestnumberofinliers
MinimalproblemsinComputerVision
CenterforMachinePerception
MinimalproblemsinComputerVision
cmp.felk.cvut.cz/minimal/
Overview
?P4P?unknownfocallength
?P4P?focal?radialdistortionMinimalproblemsincomputervisionarisewhencomputinggeometricalmodelsfromimagedata.
Theyoftenleadtosolvingsystemsofalgebraicequations.
?uP2P.knownverticaldirection
?uP3P+foal?radialdtotortionThispageprovideslinkstopublications,software,data,andevaluationofminimalproblems.
?P2PlLprobtam
NEW:
?PlP2Lproblem
ACCV2010
?5-ptrelativeposeproblem
BujnakM”KukelovaZ.,PajdlaT.,Newefficientsolutiontotheabsoluteposeproblemforcamerawithunknownfocallengthandradial
?6-ptfocaltengthproblemdistortion,ACCV2010,Queenstown,NZ,November8-12,2010.FodH
?caNbrated-uncaRbratedCODE:
4~oolrnabsoluteposeorobtemwithunknownfocallenathandradialdistortion(P4Pfr)
?4-pt3-view*ralathmpoMprobtem
?2-ptpanoramastitching(1focal)KukelovaZ.tBujnakM.,PajdlaT.,Gosed-formsolutionstotheminimalabsoluteposeproblemswithknownverticaldirection,ACCV2010,
Queenstown,NZ,November8-12,2010.(',]
?3-ptpanoramastitching(2locate)CODE:
?3>ptpanoramastitching(1focal*2jxMntabsoluteooseprobiemwithknownverticaldirection(up2p)
rod*dtotortfcxO3~pointabsolutegseproblemwithknownverticaldirectionandunknownfocallengthandradialdistortion(uD3pfr)
?Aptgenerattzedcameraproblem
*6>ptcaNbratedradtoldtotortionSOURCECODESTOSEVERALMINIMALPROBLEMS
4PoimabsoluteooseDroblemwithunknownfocallenqS(P4Pf)(newfastM^tlabversion)
?8*ptuncaHbratedradialdistortion8-point"uncatibrated"retiDoseDroblemwithradialdistortion
?9-ptdWtrentdistortionprobtam4~oointabsoluteposeDroblemwithunknownfocallenathandradialdistortion(P4Pfr)
2-pointabsoluteDoseDroblcmwithknownvertiTdirection(UD2D)
?P2flregistrationproblem3-oolntabsoluteooseDroblemwithknownverticaldirectionyidunknownfocallenathandradialdistortion(uo3Dfr)
?3-vtewtrlangulatton
?9-ptcatadioptric
3oolntlute?orobiem(P3P)
?Hand-?ye4?pointobsoluteposewigunknownfocallend由(P4P「)NEWFASTMATLABSOURCECODE
?Automaticgenerator4-pointabsoluteDoseoroblemwithunknownfocallenathandrad@distortion3口/NEW.
2pomiabsoluteposeproblemwithknownverticaldirection(UD2D)NEW
?Grobenerbasissolver
3~oointluteooseDroblOTiwithknownverticaldirectionandunknownfocallength3ndradialdistortion(uo3Dfr)NEW
http://cmp.felk.cvut.cz/minimal/
FundamentalMatrix->EssentialMatrix
X^FX2=0
E=K?FK?
區(qū)232
EssentialMatrixfRt
E=K?FK?
區(qū)2肯2
EssentialMatrix|_Rt_
Result9.19.Foragivenessentialmatrix
r
E=Udiag(l5l90)V?
andthefirstcameramatrixtherearefour
possiblechoicesforthesecondcameramatrixP2:
r
P2=[uWV|+u3
P=[lJWVr|-u
230-10
rr
P2=[uWV|+u3W=100
001
rr
P2=[uWV|-u3
Page259ofthebible(MultipleViewGeometry,2ndEd)
FourPossibleSolutions
(d)
Fig.9.12.ThefourpossiblesolutionsfbrcalibratedreconstructionfromE.Betweentheleftand
rightsidesthereisabaselinereversal.BetweenthetopandbottomrowscameraBrotates180°about
thebaseline.Note,onlyin(a)isthereconstructedpointinfrontofbothcameras.
Page260ofthebible(MultipleViewGeometry,2ndEd)
Triangulation
Infrontofthecamera?
CameraExtrinsic[R|t
?CameraCenter
—R『t二—R't
?ViewDirection
-(C)=(R(3,:)r-Rrt)-(-Rrt)=R(3,:)r
CameraCoordinateSystemWorldCoordinateSystem
Infrontofthecamera?
?Apointx
?DirectionfromcameracentertopointX-C
?AngleBetweenTwoVectors
A?B=ABcos。
?AngleBetweenx-CandViewDirection
?Justneedtotest
(X-C)?R(3,:y〉0?
PicktheSolution
Withmaximalnumberofpointsinfrontofbothcameras.
Fig.9.12.ThefourpossiblesolutionsforcalibratedreconstructionfromE.Betweentheleftand
rightsidesthereisabaselinereversal.BetweenthetopandbottomrowscameraBrotates1800about
thebaseline.Note,onlyin(a)isthereconstructedpointinfrontofbothcameras.
Page260ofthebible(MultipleViewGeometry,2ndEd)
Two-viewReconstruction
keypoints
fundamentalessential
match[R|t]triangulation
matrixmatrix
keypoints
Pipeline
StructurefromMotion(SFM)Multi-viewStereo(MVS)
Pipeline
TaughtNext
MergeTwoPointCloud
*3
If
??**
TherecanbeonlyoneR2t2
MergeTwoPointCloud
?Fromthe1stand2ndimages,wehave
[Riand[R2|t2_
?Fromthe2ndand3rdimages,wehave
R2tandFR3L
?Exercise:Howtotransformthecoordinate
systemofthesecondpointcloudtoalignwith
thefirstpointcloudsothatthereisonlyone
?*
22
Oops
SeeFromaDifferentAngle
BundleAdjustment
“Iamveryverysexy"
Point1Point2Point3
1
Image1x;=Itjx襄;=也弭h
Si:'1jSSL-
Image23
寸=吆電芍=X^A=KTIL遙.遇t三Jx
k[R21tzL
Image3—ITD11Y1KRtlx3
Y=T.賽'__
V?一有]矍_.
RethinkingtheSFMproblem
?Input:Observed2Dimageposition
~1~2
&X]
支1X2克3
八2八2八2
?Output:X3X3
UnknownCameraParameters(withsomeguess)
[此4區(qū)也口憶
UnknownPoint3Dcoordinate(withsomeguess)
丫1丫2丫3
£》*造£Y
777
T叢【'uoneAJSsqo
裊¥
£X11|=;xMW、[x=:x]
£x[,『小=""|X「i|\]y=;xuoii39[ojd-9y
Mmr]x=;x|X"|,]x=;x
問isniu
-\x\x\xpue\'口『\]『1|、]U°!W|OSP!|BAV
luaiuisnrpva|pung
BundleAdjustment
3
Avalidsolution[K|tJC%12」,W3handX\X^X,
mustlettheRe-projectionclosetothe
Observation,i.e.tominimizethereprojection
error
72
minZZ("-K[Rz.|tz.]x)
ij
BundleAdjustment
3
Avalidsolution[K|tJC%12」,W3handX\X^X,
mustlettheRe-projectionclosetothe
Observation,i.e.tominimizethereprojection
error
72
minZZ("-K[Rz.|tz.]x)
ij
Question:Whatistheunitofthisobjectivefunction?
BundleAdjustment
Avalidsolution[K|tJC%周,恢3handX\X^X3,
mustlettheRe-projectionclosetothe
Observation,i.e.tominimizethereprojection
error
72
minZZ("-K[Rz.|tz.]x)
ij
Linking
SIFTMatchingSIFTMatching
SolvingThisOptimizationProblem
?Theory:
TheLevenberg-Marquardtalgorithm
http://en.wikipedia.or4/wiki/Levenberg-Marc1uvrdtalgorithm
?Practice:
TheCeres-SolverfromGoogle
http:〃code.及。。由/p/ceres-soker/
ParameterizingRotationMatrix
-sin(6>)x
cos(e)y
R7=R\detR=l
x
3DRotation
Yaw,pitchandrollare%0/
100
&(。)=0cos(^)-sin(0
0sin(6)cos(。)也伊((QK(a)
cos(6)0sin(。)
Ry(e)=0io
-sin(O)0cos(6)Euleranglesare
cos(0-sin⑹0
⑻
Rz=sin(0cos(^)0Rz仍R")R,(a)
001
/wiki/Rotationmatrix
3DRotation
Axis-anglerepresentationQuaternions
.(e\(州
vsin—,cos
<27\2J)
AvoidGimbalLock!
Recommendation!
TripletRepresentationv6(3dof)GNotover-parameterized
Rodrigues'rotationformula
kmz=kcos8+(vxk)sine+v(v-k)(l—cos。)
http:〃/wiki/Axis-anglerepresentation
http://en.wikipedi).orH/wiki/Quaternionsandspatialrotation
http://en.wikipedia.ore/wiki/Rodrigues%27rotationformula
InitializationMatters
~1~2
X]X]
(
?Input:Observed2Dimageposition-i-23
?*2X?A2
?Output:ji女;
UnknownCameraParameters(withsomeguess)
RltjRHJAh
UnknownPoint3Dcoordinate(withsomeguess)
Pipeline
TaughtNext
MultipleViewStereo
State-of-the-art:
PMVS:http:〃vrail.cs.washinR/softwar~e/pmvs/
Accurate,Dense,andRobustMulti-ViewStereopsis,YFurukawaandJPonce,2007.
Benchmark:
http:〃/mview/
AComparisonandEvaluationofMulti-ViewStereoReconstructionAlgorithms.
SMSeitz,BCurless,JDiebel,DScharstein,RSzeliski.2006.
Baseline:
Multi-viewstereorevisited.MGoesele.BCurless,SMSeitz.2006.
Keyidea:MatchingPropagation
[1]LearningTwo-viewStereoMatching,JXiao,JChen,DYYeung,andLQuan,2008.
[2]Accurate,Dense,andRobustMulti-ViewStereopsis,YFurukawaandJPonce,2007.
[3]Multi-viewstereorevisited.MGoesele,BCurless,SMSeitz.2006.
[4]RobustDenseMatchingUsingLocalandGlobalGeometricConstraints,MLhuillier&L
Quan,2000.
Inanothercontext:
[5]PatchMatch:ARandomizedCorrespondenceAlgorithmforStructuralImageEditing,
CBarnes,EShechtman,AFinkelstein,andDBGoldman,2009.
SimplestMatchingPropagation
Wearegoingtolearnaverysimplealgorithm
Descriptor:ZNCC(Zero-meanNormalizedCross-Correlation)
Invarianttolinearradiometricchanges
Moreconservativethanotherssuchassumofabsoluteorsquaredifferencesinuniformregions
Moretolerantintexturedareaswherenoisemightbeimportant
2^(/(x+i)-7(x))(/(x+i)-7(x))
*1122
ZNCC(X1,X2)
Descriptor:ZNCC(Zero-meanNormalizedCross-Correlation)
,Invarianttolinearradiometricchanges
,Moreconservativethanotherssuchassumofabsoluteorsquaredifferencesinuniformregions
,Moretolerantintexturedareaswherenoisemightbeimportant
2^(/(x1+i)-7(x1))(/(x2+i)-7(x2))
si
o
UOABuBdoJdpas
c
MatchingPropagation
?MaintainapriorityqueueQ
?Initialize:PutallseedsintoQwiththeirZNCC
valuesasscores
?Foreachiteration:
一PopthematchwithbestZNCCscorefromQ
—Addnewpotentialmatchesintheirimmediate
spatialneighborhoodintoQ
?Safety:handleuniqueness,andpropagate
onlyonmatchablearea
MatchableArea
theareawithmaximalgradience>threshold
l-ns①工
+
+
#
+++
++
+++
#++
孕>+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋建筑行業(yè)建筑設(shè)計總結(jié)
- 2025中介居間合同書范文
- 幼兒園中對話式教育的環(huán)境創(chuàng)設(shè)研究
- 家居服裝店銷售員工作總結(jié)
- 2025施工招標代理合同
- 家具行業(yè)展示技巧分享
- 2025正規(guī)借款合同書范文
- 2025房屋的委托拍賣合同
- 教育心理學(xué)在寶寶音樂教育中的應(yīng)用
- 教育中的師生互動與學(xué)習(xí)效果關(guān)系
- 大數(shù)據(jù)與人工智能ppt
- 中醫(yī)科特色診療規(guī)范
- 建筑工程一切險條款版
- PEP小學(xué)六年級英語上冊選詞填空專題訓(xùn)練
- 古建筑修繕項目施工規(guī)程(試行)
- GA 844-2018防砸透明材料
- 化學(xué)元素周期表記憶與讀音 元素周期表口訣順口溜
- 非人力資源經(jīng)理的人力資源管理培訓(xùn)(新版)課件
- 鉬氧化物還原過程中的物相轉(zhuǎn)變規(guī)律及其動力學(xué)機理研究
- (完整word)2019注冊消防工程師繼續(xù)教育三科試習(xí)題及答案
- 《調(diào)試件現(xiàn)場管理制度》
評論
0/150
提交評論