版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆黑龍江省佳木斯一中高三上數(shù)學(xué)期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.2.函數(shù)的大致圖像為()A. B.C. D.3.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強(qiáng)度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價(jià)層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價(jià)層厚度是指將已知射線強(qiáng)度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.4.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.275.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.6.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.8.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.9.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i10.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.11.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.12.給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,則這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,則這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④二、填空題:本題共4小題,每小題5分,共20分。13.公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,若,,則的值為__________.14.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當(dāng)取最大值時(shí),該圓的標(biāo)準(zhǔn)方程為______.15.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.16.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,,.(1)求的值;(2)求的值.18.(12分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.20.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.21.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),求證:對于,恒成立;(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.22.(10分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因?yàn)闉楹瘮?shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.2、D【解析】
通過取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.3、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因?yàn)?所以,即.所以這種射線的吸收系數(shù)為.故選:C【點(diǎn)睛】本題主要考查知識(shí)的遷移能力,把數(shù)學(xué)知識(shí)與物理知識(shí)相融合;重點(diǎn)考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.4、D【解析】
設(shè)正四面體的棱長為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點(diǎn)為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.5、C【解析】
對任意的總有恒成立,因?yàn)椋瑢愠闪?,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時(shí),當(dāng),當(dāng)時(shí),故選:C.【點(diǎn)睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計(jì)算能力,屬于難題.6、C【解析】
先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.7、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.8、C【解析】
由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.9、D【解析】
兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為10、A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.11、D【解析】
利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.12、D【解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個(gè)命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個(gè)平面相交時(shí),一個(gè)平面內(nèi)的兩條直線也可以平行于另一個(gè)平面,故①錯(cuò)誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯(cuò)誤;若兩個(gè)平面垂直,只有在一個(gè)平面內(nèi)與它們的交線垂直的直線才與另一個(gè)平面垂直,故④正確.綜上,真命題是②④.故選:D【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、56【解析】
根據(jù)已知條件求等比數(shù)列的首項(xiàng)和公比,再代入等比數(shù)列的通項(xiàng)公式,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.14、【解析】
由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設(shè)圓的圓心坐標(biāo),到直線的距離等于半徑,再由均值不等式可得的最大值時(shí)圓心的坐標(biāo),進(jìn)而求出圓的標(biāo)準(zhǔn)方程.【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時(shí)取等號,可得,所以圓心坐標(biāo)為:,半徑為,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意驗(yàn)正等號成立的條件.15、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.16、1【解析】
根據(jù)程序框圖直接計(jì)算得到答案.【詳解】程序在運(yùn)行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.【點(diǎn)睛】本題考查了程序框圖,意在考查學(xué)生的計(jì)算能力和理解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因?yàn)?所以又,故,所以,所以(2)由(1)得,,,所以,所以,因?yàn)榍?即,解得,因?yàn)?所以,所以,所以,所以【點(diǎn)睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運(yùn)算能力.18、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識(shí)的綜合運(yùn)用.19、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時(shí),,即在上增;當(dāng)時(shí),,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時(shí),,在單調(diào)遞增,所以滿足題意;當(dāng)時(shí),,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點(diǎn)存在,設(shè),,據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿足題意.【點(diǎn)睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.21、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度環(huán)境監(jiān)測與污染治理承包合同3篇
- 農(nóng)村土地承包經(jīng)營權(quán)轉(zhuǎn)包買賣合同(2025年度)2篇
- 2025年度特色農(nóng)產(chǎn)品養(yǎng)殖場地租賃及銷售合同2篇
- 2025年度消防設(shè)備安裝與維修合同書范本3篇
- 二零二五年度農(nóng)機(jī)作業(yè)與農(nóng)業(yè)品牌建設(shè)合作合同3篇
- 2025年度區(qū)塊鏈技術(shù)應(yīng)用研發(fā)人員勞動(dòng)合同書3篇
- 2025年度智慧城市運(yùn)營公司經(jīng)營權(quán)承包服務(wù)合同3篇
- 2025年度全新意向合同模版:衛(wèi)星導(dǎo)航技術(shù)應(yīng)用合作協(xié)議3篇
- 2025年度農(nóng)村土地承包經(jīng)營權(quán)抵押貸款服務(wù)合同
- 二零二五年度林業(yè)生態(tài)保護(hù)承包經(jīng)營權(quán)變更合同3篇
- 污水處理廠有毒有害氣體檢測記錄表
- 馬克思主義與社會(huì)科學(xué)方法論課后思考題答案全
- 針灸推拿習(xí)題庫+參考答案
- 手術(shù)區(qū)皮膚消毒及鋪單法課件
- 血液科侵襲性真菌的治療
- 淺析巖溶地區(qū)工程地質(zhì)勘察手段及應(yīng)用
- 2023-2024學(xué)年六年級上期末數(shù)學(xué)考試試卷附答案解析
- 羅伊模式個(gè)案護(hù)理
- 公益性崗位開發(fā)申請審批表
- 中國馬克思主義與當(dāng)代知到章節(jié)答案智慧樹2023年西安交通大學(xué)
- 組織協(xié)同運(yùn)用平衡計(jì)分卡創(chuàng)造企業(yè)合力
評論
0/150
提交評論