【單元測試】第18章 勾股定理(綜合能力拔高卷)(解析版)_第1頁
【單元測試】第18章 勾股定理(綜合能力拔高卷)(解析版)_第2頁
【單元測試】第18章 勾股定理(綜合能力拔高卷)(解析版)_第3頁
【單元測試】第18章 勾股定理(綜合能力拔高卷)(解析版)_第4頁
【單元測試】第18章 勾股定理(綜合能力拔高卷)(解析版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

【高效培優(yōu)】2021-2022學(xué)年滬科版八年級數(shù)學(xué)下冊輕松沖刺學(xué)神考霸必刷卷

【單元測試】第18章勾股定理(綜合能力拔高卷)

(考試時間:90分鐘試卷滿分:100分)

學(xué)校:姓名:班級:___________考號:

本卷試題共三大題,共25小題,單選10題,填空8題,解答7題,限時90分鐘,滿分100分,本卷

題型精選核心常考重難易錯典題,具備舉一反三之效,覆蓋面積廣,可充分考查學(xué)生雙基綜合能力!

一、單選題:本題共10個小題,每小題2分,共20分。在每小題給出的四個選項中只有一

項是符合題目要求的。

1.(2022?山東槐蔭?八年級期末)直角三角形的兩直角邊長分別為5和12,則斜邊長為()

A.13B.14C.廂D.1

【答案】A

【分析】根據(jù)勾股定理,即可求得斜邊長.

【詳解】解:由題意得,該直角三角形的斜邊長為:乒透=13

故選:A.

【點睛】此題主要考查勾股定理,熟練掌握勾股定理即可解題.

2.(2022?全國?八年級期中)已知一個Rt△的兩邊長分別為3和4,則第三邊長的平方是()

A.25B.14C.7D.7或25

【答案】1)

【分析】由于4是三角形的直角邊與斜邊不能確定,故應(yīng)分兩種情況進行討論.

【詳解】解:山于4是三角形的直角邊與斜邊不能確定,故應(yīng)分兩種情況進行討論:

(1)3、4都為直角邊,由勾股定理得,斜邊為5;

(2)3為直角邊,4為斜邊,由勾股定理得,直角邊為正.

,第三邊長的平方是25或7,

故選:D.

【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊

長的平方是解答此題的關(guān)鍵.

3.(2021?江蘇江陰?八年級期中)下列長度的三條線段能組成直角三角形的是()

A.4,6,8B.6,8,10C.6,9,10D.5,11,13

【答案】B

【分析】根據(jù)勾股定理的逆定理:兩邊的平方和等于第三邊的平方,即可完成解答.

【詳解】解:A、42+62=52^82.故不能組成直角三角形;B、62+82=100=102,故能組成直角三角形;C、

62+92=117^102,故不能組成直角三角形;D、52+112=146^132,故不能組成直角三角形;

故選:B

【點睛】本題考查了勾股定理的逆定理,熟練掌握此定理是關(guān)鍵.

4.(2022?江蘇江陰?八年級期末)已知“,b,c分別是AABC的三邊,根據(jù)下列條件能判定AABC為直

角三角形的是()

A.。=2,b=3,c=4B.a=5,b=l/2,c=13

C.a=6,b=8,c=12D.a=69b=12,c=15

【答案】B

【分析】根據(jù)勾股定理的逆定理對四個選項進行逐一判斷即可.

【詳解】解:A、???22+3^42,.?.不能構(gòu)成直角三角形,故本選項錯誤:B、;52+122=132,.?.能構(gòu)成直角三

角形,故本選項正確;C、...62+82#122,...能構(gòu)成直角三角形,故本選項錯誤;D、???d+lTWl3,...不能

構(gòu)成直角三角形,故本選項錯誤.

故選:B.

【點睛】本題考查的是勾股定理的逆定理,即如果三角形的三邊長a,b,c滿足M+bJc?,那么這個三角形

就是直角三角形.

5.(2022?全國?八年級期末)已知三角形的三邊長分別為a,b,c,且a+b=10,ab=18,c=8,則該三角形

的形狀是()

A.等腰三角形B.直角三角形C.鈍角三角形D.等腰直角三角形

【答案】B

【分析】根據(jù)完全平方公式利用a+b=10,ab=18求出/+〃,即可得到三角形的形狀.

【詳解】解::a+b=10,ab=18,

/.a2+b2=(a+b)2-2ab=100-36=64,

V,c=8,

c2=64,

'2+b2=c2,

...該三角形是直角三角形,

故選:B.

【點睛】此題考查勾股定理的逆定理,完全平方公式,能夠利用完全平方公式由已知條件求事/+從是解

題的關(guān)鍵.

6.(2022?四川宜賓?八年級期末)已知RtAABC中,ZACB=90°,AC=BC,AB=40,D為BC的中點,

E是線段AB上一點,連接CE、DE,則CE+DE的最小值是()

A.2GB.2#)C.472D.2+2應(yīng)

【答案】B

【分析】作點C關(guān)于AB的對稱點C',連接C'”與AB交于點E,作DFLCC'于點F,貝UCE=C'E,CE+DE=C'E

+DE,線段CD即為CE+DE得最小值.

【詳解】解:如圖,作點C關(guān)于AB的對稱點C',連接C'£>,與AB交于點E,作DFLCC于點F,

則CE=C'E,CE+DE=CE+DE,線段C'£>即為CE+DE得最小值.

???/ACB=90。,AC=BC,AB=40,

:.AC=BC=4

D為BC的中點,

???CD=BD=yBC=yX4=2

CF=DF=V2,CC'=2CG=2X2行=4夜

C'F=CC'-CF=4母-母=3五

CD=y]C'F2+FD2='9國+(72)?=2后

故選:B.

【點睛】此題考查J'線路最短的問題,勾股定理,確定動點E何位置時,使DE+CE的值最小是解題的關(guān)鍵.

7.(2022?廣東?深圳市福田區(qū)第二實驗學(xué)校八年級期中)如圖,在底面半徑為2,取3)高為8的圓

柱體上有只小蟲子在A點,它想爬到B點,則爬行的最短路程是()

【答案】A

【分析】若螞蟻從側(cè)表面從A爬行到B,首先將此圓柱展成平面圖,根據(jù)兩點間線段最短,可得AB最短,

由勾股定理即可求得需要爬行的最短路程.

【詳解】解:若螞蟻從側(cè)表面從A爬行到B,將此圓柱展成平面圖得:

???圓柱的高等于8,底面半徑為2(n=3),

/.AC=8,BC=g8夕一/X4JI=6,

AB=^AC2+BC-=^82+62-10.

根據(jù)兩點之間線段最短,螞蟻從側(cè)表面從A爬行到B最短路徑為10.

故選:A.

【點睛】本題主要考查了平面展開圖求最短路徑問題,將圓柱體展開,根據(jù)兩點之間線段最短,運用勾股

定理解答是解題關(guān)鍵.

8.(2021?浙江?寧波市第七中學(xué)八年級期中)如果AABC的三個頂點A,B,C所對的邊分別為a,b,c.那

么下列條件中能判斷AABC是直角三角形的是()

A.ZA:ZB:ZC=3:4:5B.ZA=25°,ZB=75°

C.a=^2?b^3,c\/5D.a=6,b—10,c—12

【答案】C

【分析】根據(jù)三角形內(nèi)角和定理得出NA+NB+/C=18O。,再根據(jù)NA:NB:NC=3:4:5求出最大角NC,

再根據(jù)直角三角形的判定即可判斷選項A;根據(jù)三角形的內(nèi)角和定理求出NC,即可判斷選項B;根據(jù)勾股

定理的逆定理即可判斷選項C、選項D.

【詳解】解:A.???ZA:N3:NC=3:4:5,Z4+/B+NC=180°,

最大角ZC=-^xl80o=75°,

.?.△ABC不是直角三角形,故本選項不符合題意;

B.vZA=25°,ZB=75°,

/.ZC=180o-ZA-ZB=80°,

「.△ABC不是直角二角形,故本選項不符合題意;

C.,,,a=y/2>b->/3,c—卡,

a2+Z>2=c2,

.?.△ABC是直角三角形,故本選項符合題意;

D.a=6,b=\O,c=12,

:.a2+b2we),

.?.△ABC不是直角二角形,故本選項不符合題意;

故選:C.

【點睛】本題考查了三角形內(nèi)角和定理和勾股定理的逆定理,解題的關(guān)鍵是能熟記勾股定理的逆定理和三

角形內(nèi)角和等于180°.

9.(2021?全國?八年級單元測試)如圖,在平面直角坐標(biāo)系xOy中,己知點P(m,m),過點P作OP的垂

線交函數(shù)、=丘(k>l)的圖象于點Q.若Q的橫坐標(biāo)為1,且OPJPQ?=6,則k的值為(

A.2B.3C.28D.4

【答案】B

【分析】根據(jù)點P(m,m)可得AOPM、AQPN均為等腰直角三角形,根據(jù)OP2-PQ2=6得出2/n2-2(/M-1)2=6,

求出m值即可求得k的值.

【詳解】解:作QN工PM,

P(m,m),

ZOPM=45°,

???QP工OP,

NQPN=45。,

.?.△OPM.QPN均為等腰直角三角形,

OP=42m,PQ=>/2PN,

OP2=2m2,PQ2=2PN2=2(m-I)2,

vOP2-PQ2=6,

即2%2-2(機-1)2=6,

解得:m=2,

:.PN=QN=2-\=\,

??Q點的縱坐標(biāo)為加+1=2+1=3,

???2(1-3),

將點Q代入y=丘中,

得:k=3,

故選:B.

【點睛】本題主要考查一次函數(shù)函數(shù)圖像,等腰三角形以及勾股定理,根據(jù)已知條件求出m的值是解題的

關(guān)鍵.

10.(2021?江西九江?八年級期末)如圖,在aABC中,AB=6,AC=8,BC=10,AABD,AACE,ABCF

都是等邊三角形,下列結(jié)論中:①ABJ_AC;②四邊形AEFD是平行四邊形;③NDFE=135°;④S四娜AEFD

=20.正確的個數(shù)是()

A.1個B.2個C.3個D.4個

【答案】B

【分析】山=3(呼,得出4c=90。,故①正確;再山SAS證得AABCvADHF,得AC=Db=AE=8,

同理AABC三蛇FC(SAS),得AB=M=AD=6,則四邊形AEED是平行四邊形,故②正確;然后由平行四邊形

的性質(zhì)得NObE=NDAE=150。,則③錯誤;最后求出工在0=24,故④錯誤;即可得出答案.

【詳解】解:???AB=6,AC=8,BC=10,62+82=102,

222

.?.AB+AC=BCf

???AABC是直角三角形,ZBAC=90°,

」.A3_LAC,故①正確;

AABD?A4CE都是等邊三角形,

.-.ZZMB=ZE4C=60o,

..ZDAE=150°f

?「和\FBC都是等邊三角形,

,?.BD=BA,BF=BC,ZDBF+NFBA=ZABC+ZABF=舒,

:.NDBF=ZABC,

在AABC與AZM尸中,

AB=DB

?/ABC=/DBF,

BC=BF

/.AABC=ADBF(SAS),

:.AC=DF=AE=Sf

同理可證:^ABC=^EFC(SAS),

/.AB=EF=AD=6,

???四邊形AEED是平行四邊形,故②正確;

.?.NDFE=NDAE=150。,故③錯誤;

過A作尸于G,如圖所示:

則/4GO=90。,

???四邊形AEFD是平行四邊形,

.-.ZF04=1800-ZDFE=1800-1500=30°,

AG=-AD=3,

2

;?田=。尸?AG=8x3=24,故④錯誤;

,正確的個數(shù)是2個,

故選:B.

【點睛】本題考查了平行四邊形的判定與性質(zhì)、勾股定理的逆定理、全等三角形的判定與性質(zhì)、等邊三角

形的性質(zhì)、含3歲角的直角三角形的性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明A4BCnADBF是

解題的關(guān)鍵.

二、填空題:本題共8個小題,每題3分,共24分。

11.(2021?全國?八年級單元測試)已知AABC中,AB=17,AC=10,BC邊上的高AD=8.則邊BC的長為

【答案】21或9

【分析】根據(jù)題意,可能是銳角三角形或者鈍角三角形,分兩種情況進行討論作圖,然后利用勾股定

理即可求解.

【詳解】解:在“ABC中,AB=\1,AC=\O,BC邊上高AO=8,

如圖所示,當(dāng)AABC為銳角三角形時,

在中A5=17,AD=8,由勾股定理得:

BD1=AB2-AD2=172-82=225,

:.80=15,

在心△AC。中4C=10,AD=8,由勾股定理得:

CD2=AC2-AD2=102-82=36,

,CD=6,

;.BC的長為:BC=BD+DC=\5+6=2l;

如圖所示:當(dāng)AABC為鈍角三.角形時,

在RtZXABO中45=17,4。=8,由勾股定理得:

BD2=AB2-AD2=]12-82=225,

BD=\5,

在必△AC。中AC=10,AO=8,由勾股定理得:

CD2=AC2-A£>2=102-82=36,

CD=6,

,BC的長為:BC=BD-DC=15-6=9;

綜上可得:BC的長為:21或9.

故答案為:21或9.

【點睛】題目主要考查勾股定理,進行分類討論作出圖象運用勾股定理解直角三角形是解題關(guān)鍵.

12.(2021-全國?八年級單元測試)已知等腰三角形的腰長是13cm,底邊長10cm,則該等腰三角形的面

積是cm2.

【答案】60

【分析】根據(jù)等腰三角形三線合一定理和勾股定理即可求得底邊的高,從而求得三角形面積.

【詳解】解:如圖所示:AB=AC=13cm,BC=10cm

作ADJ_BC于D,貝l」NADB=90°

:.BD=CD=—BC=5cm,

2

?*-AD=>]AB2-BD2=12cm,

.".△ABC的面積==,4。4。=1*10*12=60€012,

22

故答案為:60.

【點睛】本題考查勾股定理和等腰三角形的性質(zhì),掌握等腰三角形三線合一是解題關(guān)鍵.

13.(2021?河南?鄭州楓楊外國語學(xué)校八年級期中)如圖,在△ABC中,點D是BC的中點,若AB=5,AC

=13,AD=6,則BC的長為.

【答案】2國

【分析】延長AD到E,使DE=AD,連接BE.先運用SAS證明△ADC也△EDB,得出BE=13.再由勾股定理的

逆定理證明出/BAE=90°,然后在AABD中運用勾股定理求出BD的長,從而得出BC=2BD.

【詳解】解:延長AD到E,使DE=AD,連接BE.

AD=ED

"ZADC=NEDB,

CD=BD

.,.△ADC^AEDB(SAS),

?\AC=BE=13.

在4ABE中,AB=5,AE=12,BE=13,

.*.AB2+AE2=BE2,

AZBAE=90°.

在ZkABD中,ZBAD=90°,AB=5,AD=6,

???BD工^AB2+AEP=舊+62=向,

.?.BO2而.

故答案為:2\/^T.

【點睛】本題考查了全等三角形的判定與性質(zhì),勾股定理及其逆定理,綜合性較強,難度中等.題中延長

中線的一倍是常用的輔助線的作法.

14.(2021?浙江?溫州市南浦實驗中學(xué)八年級期中)如圖,點D在aABC內(nèi),/BDC=90°,AB=3,AC=

BD=2,CD=1,則圖中陰影部分的面積為.

4

【答案】逐+石

【分析】根據(jù)勾股定理和?C=90。,BD=2,CD=\,可以先求出BC的長,然后根據(jù)勾股定理的逆定

理可以判斷A4BC的形狀,從而可以求出陰影部分的面積.

【詳解】解:■.■ZBDC=90°,BD=2,CD=\,

BC=^BDr+CEr=42。+l2=舊,

AB=3.AC=2?

AC2+BC2=22+(府=4+5=9=32=用,

.?.AAC8是直角三角形,ZACB=90°,

S陰影=SMCB-S1yme=2f=-j5-\,

故答案為:V5-1.

【點睛】本題考查勾股定理的逆定理、勾股定理、三角形的面積,解題的關(guān)鍵是求出8C的長.

15.(2022?重慶黔江?八年級期末)如圖是放在地面上的一個長方體盒子,其中A3=9,8C=6,BF=5,

點M在棱A3上,且A例=3,點N是尸G的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,

它需要爬行的最短路程為.

【答案】10

【分析】利用平面展開圖有兩種情況,畫出圖形利用勾股定理求出MN的長即可.

【詳解】解:如圖,

VAB=9,BC=GF=6,BF=5,點N是FG的中點,

:.NF==NG=3

2

.\BM=9-3=6,BN=5+3=8,

MN=d6+8=10

如圖2,

VAB=8,BC=GF=6,BF=5,

.,.PM=9-3+3=9,NP=5,

MN^y/92+52=7106-

?.?因為10〈阿,所以螞蟻沿長方體表面從點M爬行到點N的最短距離的10

故答案為:10

【點睛】此題主要考查r平面展開圖的最短路徑問題和勾股定理的應(yīng)用,利用展開圖有兩種情況分析得出

是解題關(guān)鍵.

16.(2022?重慶市育才中學(xué)八年級期末)如圖所示,AABC和△但'都是等腰直角三角形,

2

ZCAB=ZEAF=90°,AC平分N£A尸,連接CE、BF,取CE的中點O,連接80,若A£=§8C,則AABF

與△BCD的面積之比為.

【答案】4:5

【分析】延長AE交BC于點G,連接BE,過點F作54交BA的延長線于點H,根據(jù)等腰直角三角形的

性質(zhì)及角平分線的計算可得NFAC=/EAC=45°,AG平分NC48,利用等腰三角形“三線合一”性質(zhì)得

出AGLBC[\.BG=CG=^BC,設(shè)AE=2x(x>0),則BC=9x,由勾股定理及線段間的數(shù)量關(guān)系得出

AB=^x,EG=Jx,計算出的面積,結(jié)合圖形及題意可得力皿=5.8班=1S.BCE,根據(jù)等角對等

2n2

邊得出為等腰直角三角形,利用勾股定理可得FH=&x,結(jié)合圖形計算尸的面積,最后求面積

比即可.

【詳解】解:如圖所示:延長AE交BCF點G,連接BE,過點F作交BA的延長線于點H,

?;與-AEE均為等腰直角三角形,

/.AB=AC,AE=AF,ZEAF=ABAC=90°,

?.鵬(:平分/砍尸,

/.ZFAC=ZEAC=45°,

ZE4B=45°,

;.AG平分/CAB,

AGIBC[].BG=CG=-BC,

2

2

VAE=-BC,

9

:.9AE=2BC,

設(shè)AE=2x(x>0),則BC=9x,

9

:.BG=CG=-X

29

VZE4B=45°,ZAGB=90。,

AZABG=45°,

9

BG=AG=-x

2f

AB=^AG2+BG2

2

VAE=2x,

95

:.EG=AG-AE=-x-2x=—x

22f

2

S.KCE=-BCEG=-9x^x=—x,

?BCE2224

,ID為CE中點,

???CD=DE,

?:?BCDM?BDE中,CD邊和DE邊上的高相等,都是點B到直線CE的距離,

[45

?*S/BCD~、.BDE=TS.BCE=丁廠'

,:AE=AF,

丁ZFAC=ZEAC=ZGAB=45°,

???ZE4//=45°,

■:FHLAH,

???/"=90。,NAFH=45。,

???-AFH為等腰直角三角形,

FA=y[2FH,

.?.FH=—AF=>/2x,

2

?1.?19^2nr92

??Sc.A"=-BnAFHTt=x-y/2x=-x,

?e?S^ABF:S^BCD=o:~Q~X=4:5,

ZO

故答案為:4:5.

【點睛】題目主要考查角平分線計算,勾股定理,等腰三角形的判定和性質(zhì)等,理解題意,結(jié)合圖形,作

出輔助線,綜合運用這些知識點是解題關(guān)鍵.

17.(2021?上海市奉賢區(qū)古華中學(xué)九年級期中)如圖,在4X3的正方形網(wǎng)格中,^ABC與aDEC的頂點都

在邊長為1的小正方形的頂點上,則NBAC+NCDE=度.

AB

C

DE

【答案】45

【分析】連接A。、BE,根據(jù)勾股定理以及勾股定理的逆定理求解即可.

【詳解】解:連接A。、BE,如下圖:

由勾股定理得,A£)=Vl2+32=VT6>C£>=々+32=而,AC=yj22+42=2^

fiE=712+32=V10>CE=A/12+12=>/2)BC=d2)+于=2&

:WB?+(Vio)2=(26『,(2V2)2+(V2)2=(Vio)2,

AAD2+CD2=AC2,CE2+BC2=BE2,AD=CD

...AA£>C為等腰直角三角形,ABCE為直角三角形,NADC=NBCE:=90。

4c£>=45°

...ABAC+ZCDE=ZACD=45°

故答案為:45

【點睛】此題考查r勾股定理以及勾股定理的逆定理,解題的關(guān)鍵是熟練掌握勾股定理以及勾股定理的逆

定理.

18.(2022?江蘇東臺?九年級期末)如圖,點P在第一象限,AABP是邊長為2的等邊三角形,當(dāng)點A在

x軸的正半軸上運動時,點B隨之在y軸的正半軸上運動,運動過程中,點P到原點的最大距離是;

若將4ABP的PA邊長改為2加,另兩邊長度不變,則點P到原點的最大距離變?yōu)?

【答案】1+81+石

【詳解】解:根據(jù)當(dāng)。到AB的距離最大時,0P的值最大,得到0到AB的最大值是;AB=1,此時在斜邊的

中點M上,由勾股定理求出PM,即可求出答案;將AABP的PA邊長改為2近,另兩邊長度不變,根據(jù)

22+22=(2V2)\得到NPBA=90°,由勾股定理求出PM即可.

詳解:取AB的中點M,連0M,PM,

在RtAABO中,0M=;A5=1,在等邊三角形ABP中,PM-73,

無論aABP如何運動,0M和PM的大小不變,當(dāng)0M,PM在一直線上時,P距0最遠,

?;0到AB的最大值是:AB=1,此時在斜邊的中點M上,由勾股定理得:PM=6,

/.OP=1+V3,

將AAOP的PA邊長改為20,另兩邊長度不變,V22+22=(272)\

/.ZPBA=90°,由勾股定理得:PM=6,,此時OP=OM+PM=l+6.

點睛:本題主要考查對直角三角形斜邊上的中線性質(zhì),坐標(biāo)與圖形性質(zhì),三角形的三邊關(guān)系,勾股定理的

逆定理等邊三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)理解題意求出PD的值是解此題的關(guān)鍵.

三、解答題:本題共7個小題,19-23每題7分,24小題9分,25每題12分,共56分。

19.(2021?全國?八年級單元測試)如圖,A4?C中NACB=90。,D為邊AB上一點,且NZXX=NA.

D

CB

(1)求證:AD=BD;

(2)若CD=5,BC=6,求AC的長.

【答案】(1)見詳解;(2)8

【分析】

(1)根據(jù)NACB=90°,ZDCA=ZA,推出/B=NDCB,得出CD=BD,再根據(jù)N£>C4=NA,得出CD=AD,

從而得出AD=BD;

(2)根據(jù)(1)先求出AB的長,再根據(jù)勾股定理即可求出AC的長.

【詳解】解:(1)VZACB=90°,

.?./A+NB=90°,ZDCA+ZDCB=90o,

ZDCA=ZA,

:.ZB=ZDCB,

/.CD=BD,

?;ZDCA=ZA,

ACD=AD,

,AD=BD;

(2)由(D得:AD=CD=BD,

VCD=5,

.\AB=10,

?;BC=6,NACB=90°,

二AC=y/AB2-CB-=A/1O2-62=8.

【點睛】此題考查了勾股定理,等腰三角形的判定定理,根據(jù)在三角形中,等角等邊對求出CD=AD=DB是

解題的關(guān)鍵.

20.(2021?全國?八年級單元測試)如圖,紅星村A和幸福村B在一條小河CQ的同側(cè),它們到河岸的距

離AC,8。分別為1km和3km,又知道C£>的長為3km,現(xiàn)要在河岸CO上建一水廠向兩村輸送自來水,

鋪設(shè)水管的工程費用為每千米20000元.

B

D

(1)請在8上選擇水廠位置,使鋪設(shè)水管的費用最省(作圖工具不限,保留作圖痕跡);

(2)求鋪設(shè)水管的最省總費用.

【答案】(1)見解析;(2)100000元.

【分析】

(1)延長AC到F,使CF=AC,連接BF,交CD于E,則E為所求;

(2)過B作BN_LCA,交CA的延長線于N,求出BN,NC長,根據(jù)勾股定理求出BF,即可得出答案.

【詳解】解:(1)延長AC到F,使CF=AC,連接BF,交CD于E,

VAC1CD,

;.AE=FE,

,,.AE+BE=FE+BE=BF,

則在Cl)上選擇水廠位置是E時,使鋪設(shè)管道的費用最?。?/p>

(2)如上圖,過B作BNJ_CA,交CA的延長線于N,

二BN=CD=3km,CN=BD=3km,

VAC=CF=lkm,

/.NF-4km,

在中,由勾股定理得:BF=ylBN2+NF2=A/32+42=5^

VAC1CD,AC=CF,

???AE=FE,

,AE+BE=EF+BE=BF=5km,

?,?鋪設(shè)水管的最最省總費用是:20000X5=100000(元).

【點睛】本題考查了線段垂直平分線的性質(zhì)及勾股定理,掌握線段垂直平分線的性質(zhì)及勾股定理等知識是

解題的關(guān)鍵,此類題目重點培養(yǎng)學(xué)生的動手操作能力和計算能力.

21.(2021?廣東?珠海市文園中學(xué)八年級期中)如圖,兩個全等的等邊三角形4ABC與AACD,邊長為6,

高為a,在拼成的四邊形ABCD中,點E、F分別為AB、AD邊上的動點,滿足BE=AF,連接EF,CE,CF.

(1)求證:4CEF是等邊三角形;

(2)AAEF周長的最小值是.(用含a的式子表示)

【答案】⑴證明見解析;(2)6+36

【分析】

(1)證明△BEC2/XAFC(SAS),可得結(jié)論;

(2)AAEF的周長=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,推出EF的值最小時,△AEF的周長最小,

因為4ECF是等邊三角形,推出EF=CE,推出當(dāng)CE_LAB時,CE的值最小.

【詳解】解:(D證明:'.'△ABC,4ACD是全等的等邊三角形,

/.AC=BC,ZABC=ZDAC=ZBCA=60°,

VAF=BE,在△CBE和ZiCAF中,

CB=CA

<NCBE=ZCAF,

BE=AF

.?.△BEC絲△AFC(SAS),

/.CE=CF,ZBCE=ZACF,

二ZBCE+ZACE=ZACF+ZACE,

.".ZECF=ZBCA=60°,

/.△CEF是等邊三角形.

解:?.?△AEF的周長=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,

;.EF的值最小時,AAEF的周長最小,

VAECF是等邊三角形,

/.EF=CE,

.?.當(dāng)CELAB時,CE的值最小,

「△ABC是等邊三角形,且CEJ_AB,

AE=-AB=3,

2

在RtAAEC中,CE=SIAC2-AE2=序于=36,

.".△AEF的周長的最小值為6+3>/3,

故答案為:6+3>/3.

【點睛】本題屬于三角形綜合題,考查了等邊三角形的性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)

鍵是正確尋找全等三角形解決問題,屬于中考壓軸題.

22.(2021?全國?八年級單元測試)如圖,在一條東西走向河流的一側(cè)有一村莊C,河邊原有兩個取水點

A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,該村為方便村民取水決定在河邊新建一

個取水點II(A、H、B在同一條直線上),并新修一條路CH,測得CB=1.5千米,CH=L2千米,HB=0.9千

米.

(1)問CH是否為從村莊C到河邊的最近路?請通過計算加以說明;

(2)求新路CH比原路CA少多少千米?

【答案】解:(D是,理由見詳解;(2)新路CH比原路CA少0.05千米.

【分析】

(1)根據(jù)勾股定理的逆定理驗證△CHB為直角三角形,進而得到CHLAB,再根據(jù)點到直線的距離垂線段最短

即可解答;

(2)在AACH中根據(jù)勾股定理解答即可.

【詳解】解:(D是,理由如下:

在△(:"中,

VCH2+BH2=1.22+0.:=2.25=1.52=BC2,

即CH2+BH'=BC-,

...△CHB為直角三角形,且NCHB=90°,

.?.CII±AB,

由點到直線的距離垂線段最短可知,CH是從村莊C到河邊AB的最近路;

(2)設(shè)AC=x千米,

在RtZXACH中,由己知設(shè)AC=x,AH=x-O.9,CH=1.2,

由勾股定理得:AC2=AH-+CH2

x2=(x-0.9)1I?

解得x=1.25,即AC=1.25,

故AC-CH=1.25-1.2=0.05(千米)

答:新路CH比原路CA少0.05千米.

【點睛】本題考查勾股定理及勾股定理的逆定理的應(yīng)用,熟練掌握勾股定理及逆定理是解決本題的關(guān)鍵.

23.(2021?全國?八年級單元測試)課間,小明拿著王老師的等腰直角三角板玩,三角板不小心掉到墻縫

中.我們知道兩堵墻都是與地面垂直的,如圖.王老師沒有批評他,但要求他完成如下兩個問題:

(1)試說明△ADCgaCEB;

(2)從三角板的刻度知AC=25cm,算算一塊磚的厚度.(每塊磚的厚度均相等)小明先將問題所給條件做

了如下整理:如圖,AABC中,CA-CB,ZACB=90°,AD_LDE于D,BE_LDE于E.請你幫他完成上述問題.

【答案】(1)證明見解析;(2)5cm

【分析】

(1)根據(jù)題意可得AC=BC,ZACB=90°,AD±DE,BE±DE,進而得到NADC=NCEB=90°,再根據(jù)等角

的余角相等可得/BCE=/DAC,再證明aADC@4CEB即可.

(2)利用(1)中全等三角形的性質(zhì)進行解答.

【詳解】解:證明:(1)如圖:

VAD1DE,BE1DE,

AZADC=ZBEC=90°,

.*.Zl+Z2=90o,

VZACB=90°,

二/2+/3=180°-90°=90°,

,:ZADC=ZBEC=90°,

.*.Z1=Z3,

由NADC=NBEC=90°,Nl=/3,CA=CB,

.,.△ADC^ACEB;

(2)設(shè)每塊磚厚度為xcm,由①得,DC=BE=3xcm,AD=4xcm,

VZADC=90°,

.,.AD2+CD2=AC2,

即(4x)2+(3x)2=25?,解得x=5,(x=-5舍去),

,每塊磚厚度為5cm.

【點睛】此題主要考查了全等三角形的應(yīng)用,關(guān)鍵是正確找出證明三角形全等的條件.

24.(2021?江蘇?蘇州工業(yè)園區(qū)星灣學(xué)校八年級期中)如圖,在7x7網(wǎng)格中,每個小正方形的邊長都為1.

(DAABC的面積為一;

(2)判斷AABC的形狀,并說明理由.

(3)求A8邊上的高.

【答案】(1)5;(2)4ABC是直角三角形,理由見解析;(3)2.

【分析】

(1)根據(jù)割補法即可求解;

(2)利用勾股定理的逆定理即可判斷AABC是直角三角形;

(3)過點C作CF_LAB于點F,根據(jù)等積法即可求得CF值.

(1)

解:如圖:

VAE=1,BD=4,ED=4,EC=DC=2,

SAABC-SABDE-SABCD_SAACE-

--(AE+BD)xDE--BDxCD--AExCE

222

—x(l+4)x4--x4x2--x2xl

222

=10-4-1

=5,

故答案為:5;

(2)

解:AABC是直角三角形,理由如下:

VA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論