版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高三上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,集合,則=()A. B.C. D.2.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.1603.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=04.不等式的解集記為,有下面四個(gè)命題:;;;.其中的真命題是()A. B. C. D.5.將函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象關(guān)于直線對(duì)稱,則函數(shù)在上的值域是()A. B. C. D.6.已知隨機(jī)變量的分布列是則()A. B. C. D.7.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.9.我國(guó)古代典籍《周易》用“卦”描述萬(wàn)物的變化.每一“重卦”由從下到上排列的6個(gè)爻組成,爻分為陽(yáng)爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個(gè)陽(yáng)爻的概率是()A. B. C. D.10.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種11.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.12.設(shè),滿足約束條件,若的最大值為,則的展開式中項(xiàng)的系數(shù)為()A.60 B.80 C.90 D.120二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實(shí)數(shù)=____。14.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為________15.如圖,在體積為V的圓柱中,以線段上的點(diǎn)O為項(xiàng)點(diǎn),上下底面為底面的兩個(gè)圓錐的體積分別為,,則的值是______.16.如圖,已知,,為的中點(diǎn),為以為直徑的圓上一動(dòng)點(diǎn),則的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對(duì)應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.18.(12分)如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點(diǎn)M的互相垂直的兩直線分別與,交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)?shù)拿娣e取最大值時(shí),求兩直線MA,MB斜率的比值.19.(12分)如圖,點(diǎn)是以為直徑的圓上異于、的一點(diǎn),直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點(diǎn)到平面的距離.20.(12分)如圖,在三棱柱中,,,,為的中點(diǎn),且.(1)求證:平面;(2)求銳二面角的余弦值.21.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對(duì)稱軸方程.22.(10分)在以為頂點(diǎn)的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.2、A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.3、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評(píng):本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.4、A【解析】
作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時(shí),,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.5、D【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對(duì)稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的值域,屬于中檔題.6、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識(shí)的考查.7、C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.8、D【解析】
說(shuō)明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).9、C【解析】
利用組合的方法求所求的事件的對(duì)立事件,即該重卦沒有陽(yáng)爻或只有1個(gè)陽(yáng)爻的概率,再根據(jù)兩對(duì)立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個(gè)陽(yáng)爻”為事件.所有“重卦”共有種;“該重卦至少有2個(gè)陽(yáng)爻”的對(duì)立事件是“該重卦沒有陽(yáng)爻或只有1個(gè)陽(yáng)爻”,其中,沒有陽(yáng)爻(即6個(gè)全部是陰爻)的情況有1種,只有1個(gè)陽(yáng)爻的情況有種,故,所以該重卦至少有2個(gè)陽(yáng)爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對(duì)立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.10、C【解析】
分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于??碱}型.11、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個(gè)選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【詳解】?jī)蓷l漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.12、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項(xiàng)式定理計(jì)算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時(shí),的最大值為,故.展開式的通項(xiàng)為:,取得到項(xiàng)的系數(shù)為:.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃求最值,二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點(diǎn),由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點(diǎn)為,,切線與的交點(diǎn)為,可得,解得或?!军c(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運(yùn)用,三角形的面積求法。14、1【解析】
作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值?!驹斀狻坑?,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,此時(shí)取得最大值。由,解得,代入直線,得?!军c(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問題的解法——平移法。15、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計(jì)算即得.【詳解】由題得,,得.故答案為:【點(diǎn)睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.16、【解析】
建立合適的直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達(dá)式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點(diǎn),,,設(shè)點(diǎn),所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因?yàn)?所以的最小值為.故答案為:【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運(yùn)算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)(2)1或6【解析】
(1)設(shè),根據(jù)變換可得關(guān)于的方程,解方程即可得到答案;(2)求出特征多項(xiàng)式,再解方程,即可得答案;【詳解】(1)設(shè),則,,即,解得,則.(2)設(shè)矩陣的特征多項(xiàng)式為,可得,令,可得或.【點(diǎn)睛】本題考查矩陣的求解、矩陣的特征值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.18、(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對(duì)應(yīng)的橢圓的上頂點(diǎn),即可以求得橢圓中相應(yīng)的參數(shù),結(jié)合橢圓的離心率的大小,求得相應(yīng)的參數(shù),從而求得橢圓的方程;(2)設(shè)出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對(duì)應(yīng)點(diǎn)的坐標(biāo),進(jìn)一步求得向量的坐標(biāo),將S表示為關(guān)于k的函數(shù)關(guān)系,從眼角函數(shù)的角度去求最值,從而求得結(jié)果.詳解:(Ⅰ)依題意得對(duì):,,得:;同理:.(Ⅱ)設(shè)直線的斜率分別為,則MA:,與橢圓方程聯(lián)立得:,得,得,,所以同理可得.所以,從而可以求得因?yàn)?,所以,不妨設(shè),所以當(dāng)最大時(shí),,此時(shí)兩直線MA,MB斜率的比值.點(diǎn)睛:該題考查的是有關(guān)橢圓與直線的綜合題,在解題的過程中,注意橢圓的對(duì)稱性,以及其特殊性,與y軸的交點(diǎn)即為橢圓的上頂點(diǎn),結(jié)合橢圓焦點(diǎn)所在軸,得到相應(yīng)的參數(shù)的值,再者就是應(yīng)用離心率的大小找參數(shù)之間的關(guān)系,在研究直線與橢圓相交的問題時(shí),首先設(shè)出直線的方程,與橢圓的方程聯(lián)立,求得結(jié)果,注意從函數(shù)的角度研究問題.19、(1)見解析;(2)【解析】
(1)取的中點(diǎn),證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點(diǎn)到平面的距離可求.【詳解】解:(1)如圖:取的中點(diǎn),連接、.在中,是的中點(diǎn),是的中點(diǎn),平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點(diǎn)是圓上異于、的一點(diǎn),又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設(shè)到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點(diǎn)到平面的距離為故答案為:.【點(diǎn)睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.20、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結(jié)合已知得線面垂直;(2)以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),寫出各點(diǎn)坐標(biāo),求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因?yàn)?,為中點(diǎn),所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),則,,,,,.設(shè)平面的法向量,則,即,令,則;設(shè)平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【點(diǎn)睛】本題考查證明線面垂直,解題時(shí)注意線面垂直與線線垂直的相互轉(zhuǎn)化.考查求二面角,求空間角一般是建立空間直角坐標(biāo)系,用向量法易得結(jié)論.21、(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對(duì)稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國(guó)液體奶生產(chǎn)線數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國(guó)工業(yè)散熱片數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年小學(xué)教師教學(xué)評(píng)價(jià)與改進(jìn)聘用合同書3篇
- 二零二五年度醫(yī)療企業(yè)股權(quán)部分轉(zhuǎn)讓與技術(shù)創(chuàng)新協(xié)議3篇
- 2025年-黑龍江省安全員《B證》考試題庫(kù)
- 2025年遼寧省安全員-B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 【2021屆備考】2020全國(guó)名?;瘜W(xué)試題分類解析匯編:A單元-常用化學(xué)計(jì)量
- 天然食品一定安全嗎
- 2025年度協(xié)議離婚程序與房產(chǎn)分割及子女撫養(yǎng)合同2篇
- 2025年-河北省安全員B證考試題庫(kù)
- 巴渝文化探究課程設(shè)計(jì)
- 江蘇省南京市2025屆高三第一次調(diào)研考試(一模)英語(yǔ)試題含解析
- 無(wú)人機(jī)配送行業(yè)市場(chǎng)機(jī)遇分析
- 全國(guó)英語(yǔ)等級(jí)考試三級(jí)閱讀真題
- 數(shù)據(jù)庫(kù)原理-期末考試復(fù)習(xí)題及答案
- 2024至2030年版四川省路燈行業(yè)分析報(bào)告
- 電網(wǎng)工程施工安全基準(zhǔn)風(fēng)險(xiǎn)指南
- 蘇科版九年級(jí)物理上冊(cè)教案:11.5機(jī)械效率
- DL∕T 2602-2023 電力直流電源系統(tǒng)保護(hù)電器選用與試驗(yàn)導(dǎo)則
- DL∕T 612-2017 電力行業(yè)鍋爐壓力容器安全監(jiān)督規(guī)程
- DBJ43-T 315-2016 現(xiàn)澆混凝土保溫免拆模板復(fù)合體系應(yīng)用技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論