版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江西省玉山一中2024屆高三5月月考(數(shù)學(xué)試題)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)全集,集合,,則()A. B. C. D.2.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.3.已知i是虛數(shù)單位,則1+iiA.-12+32i4.若,則下列不等式不能成立的是()A. B. C. D.5.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.6.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個7.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.9.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.10.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.511.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b12.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標(biāo)原點,拋物線的準(zhǔn)線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準(zhǔn)線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準(zhǔn)線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,滿足,,,則的取值范圍為_________.14.正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_____15.將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域為__________.16.展開式中的系數(shù)為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.18.(12分)在中,角的對邊分別為,若.(1)求角的大?。唬?)若,為外一點,,求四邊形面積的最大值.19.(12分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.20.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.21.(12分)已知△ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.22.(10分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
可解出集合,然后進行補集、交集的運算即可.【題目詳解】,,則,因此,.故選:B.【題目點撥】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎(chǔ)題.2、D【解題分析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.3、D【解題分析】
利用復(fù)數(shù)的運算法則即可化簡得出結(jié)果【題目詳解】1+i故選D【題目點撥】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題。4、B【解題分析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【題目詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【題目點撥】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.5、D【解題分析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的公式計算得答案.【題目詳解】解:,則.故選:D.【題目點撥】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.6、C【解題分析】
求出的元素,再確定其真子集個數(shù).【題目詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【題目點撥】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認(rèn)識,本題中集合都是曲線上的點集.7、A【解題分析】
對復(fù)數(shù)進行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【題目詳解】因為為純虛數(shù),所以,得所以.故選A項【題目點撥】本題考查復(fù)數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.8、A【解題分析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【題目詳解】依題意,得,故,故,,,則.故選:A.【題目點撥】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.9、B【解題分析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【題目詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【題目點撥】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.10、D【解題分析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【題目詳解】依題意得,,,因此該雙曲線的離心率.【題目點撥】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.11、A【解題分析】
求得的導(dǎo)函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【題目詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A【題目點撥】本題考查導(dǎo)數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.12、C【解題分析】
①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對稱點為,通過分析可知當(dāng)三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達定理,可知焦點坐標(biāo)的關(guān)系,進而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【題目詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準(zhǔn)線的對稱點為,故,當(dāng)且僅當(dāng)三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【題目點撥】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【題目詳解】設(shè),,,,如圖所示:因為,,,所以A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【題目點撥】本題主要考查平面向量的模及運算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.14、2【解題分析】
先由題意列出關(guān)于的方程,求得的通項公式,再表示出即可求解.【題目詳解】解:設(shè)公比為,且,時,上式有最小值,故答案為:2.【題目點撥】本題考查等比數(shù)列、等差數(shù)列的有關(guān)性質(zhì)以及等比數(shù)列求積、求最值的有關(guān)運算,中檔題.15、【解題分析】
根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【題目詳解】函數(shù)的圖像向右平移個單位得,,,.故答案為:.【題目點撥】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.16、【解題分析】
把按照二項式定理展開,可得的展開式中的系數(shù).【題目詳解】解:,故它的展開式中的系數(shù)為,故答案為:.【題目點撥】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)將函數(shù)的解析式表示為分段函數(shù),然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不等式即可得出實數(shù)的取值范圍.【題目詳解】.(1)當(dāng)時,由,解得,此時;當(dāng)時,由,解得,此時;當(dāng)時,由,解得,此時.綜上所述,不等式的解集;(2)當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞減,則,即;當(dāng)時,函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,,解得.因此,實數(shù)的取值范圍是.【題目點撥】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數(shù)問題,考查分類討論思想的應(yīng)用,考查運算求解能力,屬于中等題.18、(1)(2)【解題分析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【題目詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時,四邊形的面積取最大值,最大值為.【題目點撥】本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.19、(1);(2)【解題分析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【題目詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【題目點撥】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應(yīng)用,屬于基礎(chǔ)題.20、(1);(2)證明見解析.【解題分析】
(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【題目詳解】(1)由,得.令.當(dāng)時,;當(dāng)時,;在上單調(diào)遞增,在上單調(diào)遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【題目點撥】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.21、(1);(2)或.【解題分析】
(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【題目詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【題目點撥】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.22、(1)3360元;(2)見解析【解題分析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店經(jīng)營租賃合同范本
- 地下綜合管廊招投標(biāo)合同
- 電子市場導(dǎo)購員招聘協(xié)議
- 企業(yè)安全生產(chǎn)責(zé)任制協(xié)議書
- 建筑工程腳手架施工合同
- 醫(yī)療奇跡電視劇編劇招聘
- 電子工程監(jiān)理管理與評標(biāo)方案
- 國際創(chuàng)意園區(qū)檢查井施工合同
- 礦山開采工程委托施工合同
- 建筑工程學(xué)院招聘協(xié)議
- 冬季暖棚法施工方案
- 房建監(jiān)理大綱技術(shù)標(biāo)
- 神經(jīng)調(diào)節(jié)的基本方式 2024-2025學(xué)年高二生物同步課堂(人教版2019選擇性必修1)
- 瀝青路面施工組織設(shè)計
- 2024年新課標(biāo)高考生物試卷(適用黑龍江、遼寧、吉林地區(qū) 真題+答案)
- 委托第三方公司代付款協(xié)議模板
- 幼兒園中班語言課件:《秋天的顏色》
- 2024年共青團團課考試題庫及答案
- 護理敏感質(zhì)量指標(biāo)
- DZ∕T 0153-2014 物化探工程測量規(guī)范(正式版)
- 西方思想經(jīng)典導(dǎo)讀智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
評論
0/150
提交評論