版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河南省遂平中學(xué)下學(xué)期高三二模數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是()A. B. C. D.2.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.3.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.4.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要5.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.6.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.7.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒(méi)有公共點(diǎn),其中正確命題的序號(hào)是()A.①④ B.②③ C.①③④ D.①②④8.已知,若對(duì)任意,關(guān)于x的不等式(e為自然對(duì)數(shù)的底數(shù))至少有2個(gè)正整數(shù)解,則實(shí)數(shù)a的取值范圍是()A. B. C. D.9.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.10.若函數(shù)在時(shí)取得極值,則()A. B. C. D.11.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個(gè)交點(diǎn)為,則()A. B. C. D.12.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,已知A0,a,B3,a+414.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________15.設(shè)數(shù)列的前n項(xiàng)和為,且,若,則______________.16.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時(shí)橢圓的方程是____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大?。唬á颍┤?,求面積的取值范圍.18.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長(zhǎng)度設(shè)計(jì)到最長(zhǎng),求的最大值.19.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.20.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點(diǎn),且滿足.(1)求證:直線平面;(2)求二面角的正弦值.21.(12分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).22.(10分)某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【題目詳解】當(dāng)時(shí),,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點(diǎn)坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是.故選:A【題目點(diǎn)撥】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問(wèn)題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.2、B【解題分析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【題目詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【題目點(diǎn)撥】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過(guò)向量的線性運(yùn)算、數(shù)量積運(yùn)算將問(wèn)題轉(zhuǎn)化為向量夾角的求解問(wèn)題.3、C【解題分析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過(guò)題中所給的是正數(shù)這一條件和常用不等式方法來(lái)確定的取值范圍.【題目詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【題目點(diǎn)撥】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.4、B【解題分析】
根據(jù)充分必要條件的概念進(jìn)行判斷.【題目詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【題目點(diǎn)撥】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問(wèn)題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.5、A【解題分析】
畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【題目詳解】由于,,由于,令,,在↗,↘故.故選:A【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.6、B【解題分析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【題目詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.【題目點(diǎn)撥】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.7、A【解題分析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)椋钪迭c(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無(wú)零點(diǎn),知④正確.【題目詳解】由題意得:定義域?yàn)?,,為奇函?shù),圖象關(guān)于原點(diǎn)對(duì)稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無(wú)交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無(wú)交點(diǎn);綜上所述:與無(wú)交點(diǎn),④正確.故選:.【題目點(diǎn)撥】本題考查函數(shù)與導(dǎo)數(shù)知識(shí)的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問(wèn)題的求解;本題綜合性較強(qiáng),對(duì)于學(xué)生的分析和推理能力有較高要求.8、B【解題分析】
構(gòu)造函數(shù)(),求導(dǎo)可得在上單調(diào)遞增,則,問(wèn)題轉(zhuǎn)化為,即至少有2個(gè)正整數(shù)解,構(gòu)造函數(shù),,通過(guò)導(dǎo)數(shù)研究單調(diào)性,由可知,要使得至少有2個(gè)正整數(shù)解,只需即可,代入可求得結(jié)果.【題目詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問(wèn)題轉(zhuǎn)化為至少存在兩個(gè)正整數(shù)x,使得成立,設(shè),,則,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞增.,整理得.故選:B.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問(wèn)題中求解參數(shù)問(wèn)題,考查學(xué)生分析問(wèn)題的能力和邏輯推理能力,難度較難.9、D【解題分析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【題目詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【題目點(diǎn)撥】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.10、D【解題分析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【題目詳解】因?yàn)椋裕趾瘮?shù)在時(shí)取得極值,所以,解得.故選D【題目點(diǎn)撥】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問(wèn)題,屬于??碱}型.11、C【解題分析】
求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【題目詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【題目點(diǎn)撥】本小題主要考查拋物線的弦長(zhǎng)的求法,屬于基礎(chǔ)題.12、D【解題分析】
根據(jù)復(fù)數(shù)的運(yùn)算,化簡(jiǎn)得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【題目詳解】由題意,根據(jù)復(fù)數(shù)的運(yùn)算,可得,所對(duì)應(yīng)的點(diǎn)為位于第四象限.故選D.【題目點(diǎn)撥】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,準(zhǔn)確化簡(jiǎn)復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、(-53,【解題分析】
求出AB的長(zhǎng)度,直線方程,結(jié)合△ABC的面積為5,轉(zhuǎn)化為圓心到直線的距離進(jìn)行求解即可.【題目詳解】解:AB的斜率k=a+4-a3-0=4=3設(shè)△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個(gè)不同的點(diǎn)C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應(yīng)該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【題目點(diǎn)撥】本題主要考查直線與圓的位置關(guān)系的應(yīng)用,求出直線方程和AB的長(zhǎng)度,轉(zhuǎn)化為圓心到直線的距離是解決本題的關(guān)鍵.14、【解題分析】
聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【題目詳解】解:聯(lián)立解得或,即,,,,,故答案為:【題目點(diǎn)撥】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.15、9【解題分析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【題目詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項(xiàng)為-3、公比為3的等比數(shù)列,所以.故答案為:9.【題目點(diǎn)撥】本題考查已知與的關(guān)系求數(shù)列通項(xiàng)的問(wèn)題,要注意n的范圍,考查學(xué)生運(yùn)算求解能力,是一道中檔題.16、【解題分析】
根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對(duì)稱軸與求解的關(guān)系分析最值求解即可.【題目詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶?duì)稱軸為.(i)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.此時(shí),解得.(ii)當(dāng)時(shí),在上單調(diào)遞減.此時(shí),解得舍去.綜上,橢圓方程為.故答案為:【題目點(diǎn)撥】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問(wèn)題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對(duì)稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)【解題分析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【題目詳解】(I)因?yàn)椋?,,,或,或,因?yàn)?,所以所以;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號(hào),又因?yàn)?,所以,所以【題目點(diǎn)撥】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1),;(2)米.【解題分析】
(1)過(guò)點(diǎn)作于點(diǎn)再在中利用正弦定理求解,再根據(jù)求解,進(jìn)而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【題目詳解】解:過(guò)點(diǎn)作于點(diǎn)則,在中,,,由正弦定理得:,,,,,因?yàn)?化簡(jiǎn)得,令,,且,因?yàn)?故令即,記,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減,又,當(dāng)時(shí),取最大值,此時(shí),的最大值為米.【題目點(diǎn)撥】本題主要考查了三角函數(shù)在實(shí)際中的應(yīng)用,需要根據(jù)題意建立角度與長(zhǎng)度間的關(guān)系,進(jìn)而求導(dǎo)分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對(duì)應(yīng)的最值即可.屬于難題.19、(1)(2)證明見解析【解題分析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【題目詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【題目點(diǎn)撥】本題考查了函數(shù)的切線問(wèn)題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.20、(1)證明見解析(2)【解題分析】
(1)連接,設(shè),連接.通過(guò)證明,證得直線平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的正弦值.【題目詳解】(1)連接,設(shè),連接,因?yàn)?,所以,所以,在中,因?yàn)椋?,且平面,故平?(2)因?yàn)?,,,,,所以,因?yàn)?,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,所以,因?yàn)?,所以,所以點(diǎn)的坐標(biāo)為,所以,,設(shè)為平面的法向量,則,令,解得,,所以,即為平面的一個(gè)法向量.,同理可求得平面的一個(gè)法向量為所以所以二面角的正弦值為【題目點(diǎn)撥】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2);(3).【解題分析】
(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【題目詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)三通模具市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)MP3反折板市場(chǎng)調(diào)查研究報(bào)告
- 2025至2031年中國(guó)豬爪脫毛機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)牛腹肉行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國(guó)香菇蠔油數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)硅橡膠增爬裙數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)熱敏收銀紙數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)帶電腦豪華型生化分析儀數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二零二五年度地鐵隧道水電暖消防安全保障合同2篇
- 二零二五個(gè)人住房貸款合同范本參考8篇
- 公務(wù)攝影拍攝技巧分享
- 倉(cāng)儲(chǔ)中心退貨管理制度
- 豐田鋒蘭達(dá)說(shuō)明書
- 白宮-人工智能行業(yè):美國(guó)人工智能權(quán)利法案藍(lán)圖(英譯中)
- 典范英語(yǔ)8-15Here comes trouble原文翻譯
- 六安市葉集化工園區(qū)污水處理廠及配套管網(wǎng)一期工程環(huán)境影響報(bào)告書
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第一章運(yùn)動(dòng)技能學(xué)習(xí)與控制概述
- 工程設(shè)計(jì)費(fèi)取費(fèi)標(biāo)準(zhǔn)
- 清華大學(xué)考生自述
- 人機(jī)工程學(xué)與眼鏡
- 中層后備干部培訓(xùn)心得體會(huì)范本
評(píng)論
0/150
提交評(píng)論