版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省煙臺(tái)市芝罘區(qū)煙臺(tái)二中高三教學(xué)質(zhì)量檢測(cè)試題試卷(一)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說(shuō)法正確的是()A.至少有一個(gè)樣本點(diǎn)落在回歸直線(xiàn)上B.若所有樣本點(diǎn)都在回歸直線(xiàn)上,則變量同的相關(guān)系數(shù)為1C.對(duì)所有的解釋變量(),的值一定與有誤差D.若回歸直線(xiàn)的斜率,則變量x與y正相關(guān)2.是定義在上的增函數(shù),且滿(mǎn)足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.3.在正方體中,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線(xiàn)的拋物線(xiàn)經(jīng)過(guò),設(shè)球的半徑分別為,則()A. B. C. D.4.我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.某中學(xué)擬從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為()A. B. C. D.5.已知函數(shù),,若成立,則的最小值是()A. B. C. D.6.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.8.已知非零向量滿(mǎn)足,,且與的夾角為,則()A.6 B. C. D.39.tan570°=()A. B.- C. D.10.已知冪函數(shù)的圖象過(guò)點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.11.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.直角坐標(biāo)系中,雙曲線(xiàn)()與拋物線(xiàn)相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線(xiàn)的離心率()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,所對(duì)的邊分別邊,且,設(shè)角的角平分線(xiàn)交于點(diǎn),則的值最小時(shí),___.14.若雙曲線(xiàn)的兩條漸近線(xiàn)斜率分別為,,若,則該雙曲線(xiàn)的離心率為_(kāi)_______.15.已知實(shí)數(shù),滿(mǎn)足,則的最大值為_(kāi)_____.16.定義在上的奇函數(shù)滿(mǎn)足,并且當(dāng)時(shí),則___三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系xOy中,直線(xiàn)的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為.(l)求直線(xiàn)的普通方程和曲線(xiàn)C的直角坐標(biāo)方程:(2)若直線(xiàn)與曲線(xiàn)C相交于A,B兩點(diǎn),且.求直線(xiàn)的方程.18.(12分)為提供市民的健身素質(zhì),某市把四個(gè)籃球館全部轉(zhuǎn)為免費(fèi)民用(1)在一次全民健身活動(dòng)中,四個(gè)籃球館的使用場(chǎng)數(shù)如圖,用分層抽樣的方法從四場(chǎng)館的使用場(chǎng)數(shù)中依次抽取共25場(chǎng),在中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個(gè)籃球館一個(gè)月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線(xiàn)方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值參考數(shù)據(jù)和公式:,19.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(20.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若的解集為,,求證:.22.(10分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線(xiàn)與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
對(duì)每一個(gè)選項(xiàng)逐一分析判斷得解.【題目詳解】回歸直線(xiàn)必過(guò)樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線(xiàn)上﹐故A錯(cuò)誤;所有樣本點(diǎn)都在回歸直線(xiàn)上,則變量間的相關(guān)系數(shù)為,故B錯(cuò)誤;若所有的樣本點(diǎn)都在回歸直線(xiàn)上,則的值與相等,故C錯(cuò)誤;相關(guān)系數(shù)r與符號(hào)相同,若回歸直線(xiàn)的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【題目點(diǎn)撥】本題主要考查線(xiàn)性回歸方程的性質(zhì),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.2、D【解題分析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【題目詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.3、D【解題分析】
由題先畫(huà)出立體圖,再畫(huà)出平面處的截面圖,由拋物線(xiàn)第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線(xiàn)的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對(duì)角線(xiàn)上,通過(guò)幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【題目詳解】根據(jù)拋物線(xiàn)的定義,點(diǎn)到點(diǎn)的距離與到直線(xiàn)的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線(xiàn)的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個(gè)球心和兩球的切點(diǎn)均在體對(duì)角線(xiàn)上,兩個(gè)球在平面處的截面如圖所示,則,所以.又因?yàn)?,因此,得,所?故選:D【題目點(diǎn)撥】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線(xiàn)幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)4、D【解題分析】
利用列舉法,從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【題目詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.記這5部專(zhuān)著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時(shí)期.從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的基本事件有,共9種情況,所以所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為.故選D.【題目點(diǎn)撥】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.5、A【解題分析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問(wèn)題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).6、A【解題分析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【題目詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【題目點(diǎn)撥】本題考查了常見(jiàn)幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.7、A【解題分析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【題目詳解】輸入,,因?yàn)椋杂沙绦蚩驁D知,輸出的值為.故選:A【題目點(diǎn)撥】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.8、D【解題分析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【題目詳解】解:非零向量,滿(mǎn)足,可知兩個(gè)向量垂直,,且與的夾角為,說(shuō)明以向量,為鄰邊,為對(duì)角線(xiàn)的平行四邊形是正方形,所以則.故選:.【題目點(diǎn)撥】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,屬于基礎(chǔ)題.9、A【解題分析】
直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.【題目詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【題目點(diǎn)撥】本題考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.10、A【解題分析】
根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【題目詳解】依題意,得,故,故,,,則.故選:A.【題目點(diǎn)撥】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.11、D【解題分析】
求出復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo),即可得出結(jié)論.【題目詳解】復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,該點(diǎn)位于第四象限.故選:D.【題目點(diǎn)撥】本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的位置的判斷,屬于基礎(chǔ)題.12、D【解題分析】
根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線(xiàn)得到坐標(biāo)為,再將點(diǎn)代入雙曲線(xiàn)得到離心率.【題目詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線(xiàn)OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線(xiàn)得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線(xiàn)得到故答案為:D.【題目點(diǎn)撥】求雙曲線(xiàn)的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【題目詳解】因?yàn)?,則,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)椋?,所?故答案為:.【題目點(diǎn)撥】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.14、2【解題分析】
由題得,再根據(jù)求解即可.【題目詳解】雙曲線(xiàn)的兩條漸近線(xiàn)為,可令,,則,所以,解得.故答案為:2.【題目點(diǎn)撥】本題考查雙曲線(xiàn)漸近線(xiàn)求離心率的問(wèn)題.屬于基礎(chǔ)題.15、【解題分析】
畫(huà)出不等式組表示的平面區(qū)域,將目標(biāo)函數(shù)理解為點(diǎn)與構(gòu)成直線(xiàn)的斜率,數(shù)形結(jié)合即可求得.【題目詳解】不等式組表示的平面區(qū)域如下所示:因?yàn)榭梢岳斫鉃辄c(diǎn)與構(gòu)成直線(xiàn)的斜率,數(shù)形結(jié)合可知,當(dāng)且僅當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),斜率取得最大值,故的最大值為.故答案為:.【題目點(diǎn)撥】本題考查目標(biāo)函數(shù)為斜率型的規(guī)劃問(wèn)題,屬基礎(chǔ)題.16、【解題分析】
根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對(duì)稱(chēng)軸及周期性,進(jìn)而由的解析式求得的值.【題目詳解】滿(mǎn)足,由函數(shù)對(duì)稱(chēng)性可知關(guān)于對(duì)稱(chēng),且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時(shí),所以,所以,故答案為:.【題目點(diǎn)撥】本題考查了函數(shù)奇偶性與對(duì)稱(chēng)性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解題分析】
(1)將消去參數(shù)t可得直線(xiàn)的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線(xiàn)被圓截得的弦長(zhǎng)公式計(jì)算可得答案.【題目詳解】(1)由消去參數(shù)t得(),由得曲線(xiàn)C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線(xiàn)的距離為,∴,即,整理得,∵,∴,,,所以直線(xiàn)l的方程為:.【題目點(diǎn)撥】本題考查參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程之間的互化,考查直線(xiàn)被圓截得的弦長(zhǎng)公式的應(yīng)用,考查分析能力與計(jì)算能力,屬于基礎(chǔ)題.18、(1)見(jiàn)解析,12.5(2)①②20【解題分析】
(1)運(yùn)用分層抽樣,結(jié)合總場(chǎng)次為100,可求得的值,再運(yùn)用古典概型的概率計(jì)算公式可求解果;(2)①由公式可計(jì)算的值,進(jìn)而可求與的回歸直線(xiàn)方程;②求出,再對(duì)函數(shù)求導(dǎo),結(jié)合單調(diào)性,可估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值.【題目詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以?xún)蓴?shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因?yàn)樗裕?,;②,設(shè),所以當(dāng)遞增,當(dāng)遞減所以約惠值最大值時(shí)的值為20【題目點(diǎn)撥】本題考查直方圖的實(shí)際應(yīng)用,涉及求概率,平均數(shù)、擬合直線(xiàn)和導(dǎo)數(shù)等問(wèn)題,關(guān)鍵是要讀懂題意,屬于中檔題.19、(I)π;(II)-【解題分析】
(I)化簡(jiǎn)得到fx(II)f(α2)=2sin【題目詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【題目點(diǎn)撥】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1)見(jiàn)證明;(2)【解題分析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類(lèi)討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【題目詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)?,?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.21、(1);(2)見(jiàn)解析.【解題分析】
(1)當(dāng)時(shí),將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實(shí)數(shù),可得出,將代數(shù)式變形為,將與相乘,展開(kāi)后利用基本不等式可求得的最小值,進(jìn)而可證得結(jié)論.【題目詳解】(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024補(bǔ)償貿(mào)易的購(gòu)銷(xiāo)合同范文
- 企業(yè)與個(gè)人租車(chē)合同格式
- 家庭日常清潔委托合同大全
- 國(guó)際工程分包勞務(wù)合同
- 2024北京市房屋租賃合同自行成交
- 2024工廠車(chē)間承包合同范文
- 保管協(xié)議范文
- 平面廣告設(shè)計(jì)委托協(xié)議書(shū)
- 2024室內(nèi)裝修合同新
- 股份買(mǎi)賣(mài)合同樣本
- 乙酸乙酯的反應(yīng)器設(shè)計(jì)流程圖
- 《全國(guó)技工院校專(zhuān)業(yè)目錄(2022年修訂)》專(zhuān)業(yè)主要信息
- EM277的DP通訊使用詳解
- 耐壓絕緣測(cè)試報(bào)告
- 野獸派 beast 花店 調(diào)研 設(shè)計(jì)-文檔資料
- 水泵房每日巡視檢查表
- 杭州市區(qū)汽車(chē)客運(yùn)站臨時(shí)加班管理規(guī)定
- 墊片沖壓模具設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 冷庫(kù)工程特點(diǎn)施工難點(diǎn)分析及對(duì)策
- Python-Django開(kāi)發(fā)實(shí)戰(zhàn)
- 小學(xué)道法小學(xué)道法1我們的好朋友--第一課時(shí)ppt課件
評(píng)論
0/150
提交評(píng)論