2024年湖北省蘄春縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2024年湖北省蘄春縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2024年湖北省蘄春縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2024年湖北省蘄春縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2024年湖北省蘄春縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年湖北省蘄春縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知集合,,則()A. B. C. D.2.設(shè)為的兩個(gè)零點(diǎn),且的最小值為1,則()A. B. C. D.3.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.4.已知集合,集合,若,則()A. B. C. D.5.已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球,乙盒子中有個(gè)紅球,個(gè)藍(lán)球,同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則()A. B.C. D.6.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.7.若各項(xiàng)均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.48.雙曲線x2a2A.y=±2x B.y=±3x9.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,10.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.011.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減12.關(guān)于函數(shù),有下列三個(gè)結(jié)論:①是的一個(gè)周期;②在上單調(diào)遞增;③的值域?yàn)?則上述結(jié)論中,正確的個(gè)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.割圓術(shù)是估算圓周率的科學(xué)方法,由三國時(shí)期數(shù)學(xué)家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自其內(nèi)接正十二邊形內(nèi)部的概率為________.14.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為_____.15.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.16.正四面體的一個(gè)頂點(diǎn)是圓柱上底面的圓心,另外三個(gè)頂點(diǎn)圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.18.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.20.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價(jià)格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.21.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對于任意,有且僅有一個(gè)零點(diǎn).22.(10分)某商場為改進(jìn)服務(wù)質(zhì)量,隨機(jī)抽取了200名進(jìn)場購物的顧客進(jìn)行問卷調(diào)查.調(diào)查后,就顧客“購物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān)?(2)為答謝顧客,該商場對某款價(jià)格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計(jì),在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應(yīng)事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學(xué)期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先化簡,再求.【詳解】因?yàn)?,又因?yàn)?,所以,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.2、A【解析】

先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個(gè)零點(diǎn),且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點(diǎn)睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.3、C【解析】

先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問題中組合數(shù)的應(yīng)用.4、A【解析】

根據(jù)或,驗(yàn)證交集后求得的值.【詳解】因?yàn)椋曰?當(dāng)時(shí),,不符合題意,當(dāng)時(shí),.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.5、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個(gè)數(shù),對應(yīng)的事件有哪些結(jié)果,從而得到對應(yīng)的概率的大小,再者就是對隨機(jī)變量的值要分清,對應(yīng)的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個(gè)球,有交換的都是紅球、交換的都是藍(lán)球、甲盒的紅球換的乙盒的藍(lán)球、甲盒的藍(lán)球交換的乙盒的紅球,紅球的個(gè)數(shù)就會出現(xiàn)三種情況;如果交換的是兩個(gè)球,有紅球換紅球、藍(lán)球換藍(lán)球、一藍(lán)一紅換一藍(lán)一紅、紅換藍(lán)、藍(lán)換紅、一藍(lán)一紅換兩紅、一藍(lán)一紅換亮藍(lán),對應(yīng)的紅球的個(gè)數(shù)就是五種情況,所以分析可以求得,故選A.點(diǎn)睛:該題考查的是有關(guān)隨機(jī)事件的概率以及對應(yīng)的期望的問題,在解題的過程中,需要對其對應(yīng)的事件弄明白,對應(yīng)的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.6、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.7、C【解析】

由正項(xiàng)等比數(shù)列滿足,即,又,即,運(yùn)算即可得解.【詳解】解:因?yàn)?,所以,又,所以,又,解?故選:C.【點(diǎn)睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.8、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a29、A【解析】

設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.10、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.11、C【解析】

先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.12、B【解析】

利用三角函數(shù)的性質(zhì),逐個(gè)判斷即可求出.【詳解】①因?yàn)?,所以是的一個(gè)周期,①正確;②因?yàn)?,,所以在上不單調(diào)遞增,②錯(cuò)誤;③因?yàn)?,所以是偶函?shù),又是的一個(gè)周期,所以可以只考慮時(shí),的值域.當(dāng)時(shí),,在上單調(diào)遞增,所以,的值域?yàn)?,③錯(cuò)誤;綜上,正確的個(gè)數(shù)只有一個(gè),故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點(diǎn)取自其內(nèi)接正十二邊形的概率為,故答案為:.【點(diǎn)睛】本小題主要考查面積型幾何概型的計(jì)算,屬于基礎(chǔ)題.14、【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.15、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,16、【解析】

設(shè)正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設(shè)正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點(diǎn)睛】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時(shí)和時(shí)的單調(diào)性證明,求出實(shí)數(shù)的取值范圍先求出、的通項(xiàng)公式,利用當(dāng)時(shí),得,下面證明:解析:(Ⅰ)因?yàn)椋?,,切點(diǎn)為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號).故在上為增函數(shù).①當(dāng)時(shí),,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時(shí),由于,,根據(jù)零點(diǎn)存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時(shí),,故在上為減函數(shù),所以當(dāng)時(shí),,故在上不恒成立,所以不符合題意.綜上所述,實(shí)數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時(shí),,故當(dāng)時(shí),,故,故.下面證明:因?yàn)槎?,,即:點(diǎn)睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計(jì)算較為復(fù)雜,本題屬于難題.18、(1);(2)【解析】

(1)當(dāng)時(shí),將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點(diǎn)分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時(shí),可得,即,化簡得:,所以不等式的解集為.(2)①當(dāng)時(shí),由函數(shù)單調(diào)性可得,解得;②當(dāng)時(shí),,所以符合題意;③當(dāng)時(shí),由函數(shù)單調(diào)性可得,,解得綜上,實(shí)數(shù)的取值范圍為【點(diǎn)睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.19、(1),();(2).【解析】

(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個(gè)方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項(xiàng)相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當(dāng)時(shí),.②當(dāng)時(shí),.【點(diǎn)睛】此題等差數(shù)列的通項(xiàng)公式的求解,裂項(xiàng)相消求和等知識點(diǎn),考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.20、(1)乙同學(xué)正確(2)分布列見解析,【解析】

(1)由已知可得甲不正確,求出樣本中心點(diǎn)代入驗(yàn)證,即可得出結(jié)論;(2)根據(jù)(1)中得到的回歸方程,求出估值,得到“理想數(shù)據(jù)”的個(gè)數(shù),確定“理想數(shù)據(jù)”的個(gè)數(shù)的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負(fù)相關(guān)關(guān)系,故甲不正確,,代入兩個(gè)回歸方程,驗(yàn)證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計(jì)算估計(jì)數(shù)據(jù)如下表:“理想數(shù)據(jù)”有3個(gè),故“理想數(shù)據(jù)”的個(gè)數(shù)的取值為:.,,于是“理想數(shù)據(jù)”的個(gè)數(shù)的分布列【點(diǎn)睛】本題考查樣本回歸中心點(diǎn)與線性回歸直線方程關(guān)系,以及離散型隨機(jī)變量的分布列和期望,意在考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.21、(1)(2)證明見解析【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論