![2024屆安徽省肥東中學(xué)高三二調(diào)數(shù)學(xué)試題_第1頁](http://file4.renrendoc.com/view11/M02/28/18/wKhkGWWSCsOAAd4uAAIBqjEs50w059.jpg)
![2024屆安徽省肥東中學(xué)高三二調(diào)數(shù)學(xué)試題_第2頁](http://file4.renrendoc.com/view11/M02/28/18/wKhkGWWSCsOAAd4uAAIBqjEs50w0592.jpg)
![2024屆安徽省肥東中學(xué)高三二調(diào)數(shù)學(xué)試題_第3頁](http://file4.renrendoc.com/view11/M02/28/18/wKhkGWWSCsOAAd4uAAIBqjEs50w0593.jpg)
![2024屆安徽省肥東中學(xué)高三二調(diào)數(shù)學(xué)試題_第4頁](http://file4.renrendoc.com/view11/M02/28/18/wKhkGWWSCsOAAd4uAAIBqjEs50w0594.jpg)
![2024屆安徽省肥東中學(xué)高三二調(diào)數(shù)學(xué)試題_第5頁](http://file4.renrendoc.com/view11/M02/28/18/wKhkGWWSCsOAAd4uAAIBqjEs50w0595.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省肥東中學(xué)高三二調(diào)數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.2.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.3.若數(shù)列滿足且,則使的的值為()A. B. C. D.4.中,點在邊上,平分,若,,,,則()A. B. C. D.5.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數(shù)為;當無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,6.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點有無窮多個7.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.8.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,9.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.10.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④11.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.312.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.14.的展開式中的系數(shù)為__________(用具體數(shù)據(jù)作答).15.拋物線上到其焦點的距離為的點的個數(shù)為________.16.設(shè)滿足約束條件,則目標函數(shù)的最小值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設(shè)直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.18.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設(shè)直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設(shè)M、N是曲線C上的兩點,若,求面積的最大值.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.20.(12分)已知△ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.21.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.(1)為了解“五·一”勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數(shù)據(jù)分成3個區(qū)間整理得表:勞動節(jié)當日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動節(jié)當日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入?yún)s不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數(shù)學(xué)期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應(yīng)投入多少艘型游船才能使其當日獲得的總利潤最大?22.(10分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.2、B【解題分析】
根據(jù)角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【題目詳解】因為終邊上有一點,所以,故選:B【題目點撥】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.3、C【解題分析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.4、B【解題分析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【題目詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【題目點撥】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.5、B【解題分析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【題目詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【題目點撥】離散型隨機變量的分布列的計算,應(yīng)先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.6、D【解題分析】
運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達式判斷即可.【題目詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【題目點撥】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.7、B【解題分析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進行辨析.【題目詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【題目點撥】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.8、A【解題分析】
設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【題目詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【題目點撥】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.9、B【解題分析】
由值域為確定的值,得,利用對稱中心列方程求解即可【題目詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【題目點撥】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為010、D【解題分析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【題目詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【題目點撥】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.11、A【解題分析】,故,故選A.12、A【解題分析】
根據(jù)向量平行的坐標表示即可求解.【題目詳解】,,,,即,故選:A【題目點撥】本題主要考查了向量平行的坐標運算,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,
∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計算能力,屬于中檔題.14、【解題分析】
利用二項展開式的通項公式可求的系數(shù).【題目詳解】的展開式的通項公式為,令,故,故的系數(shù)為.故答案為:.【題目點撥】本題考查二項展開式中指定項的系數(shù),注意利用通項公式來計算,本題屬于容易題.15、【解題分析】
設(shè)拋物線上任意一點的坐標為,根據(jù)拋物線的定義求得,并求出對應(yīng)的,即可得出結(jié)果.【題目詳解】設(shè)拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數(shù)為.故答案為:.【題目點撥】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎(chǔ)題.16、【解題分析】
根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【題目詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【題目點撥】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是為定值,的橫坐標為定值【解題分析】
(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點的橫坐標,結(jié)合根與系數(shù)關(guān)系進行化簡,求得的橫坐標為定值.【題目詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點,設(shè)直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因為.所以.所以的橫坐標為定值.【題目點撥】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關(guān)系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.18、(1);(2)1.【解題分析】
(1)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(2),,由(1)通過計算得到,即最大值為1.【題目詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C相交的兩點中,必有一個為原點O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當,即取時,.【題目點撥】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,三角形面積的最值問題,是一道容易題.19、(1)(2)【解題分析】
(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設(shè),由利用向量的數(shù)量積等于可求解,最后驗證當點與點重合時也滿足.【題目詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內(nèi),當時,線段長最小為當點與點不重合時,設(shè),化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【題目點撥】本題考查了極坐標與普通方程的互化、直線與圓的位置關(guān)系、列方程求動點的軌跡方程,屬于基礎(chǔ)題.20、(1);(2)或.【解題分析】
(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【題目詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【題目點撥】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.21、(1);(2)投入3艘型游船使其當日獲得的總利潤最大【解題分析】
(1)首先計算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.【題目詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度中式烤鴨技藝傳承學(xué)員收費合作合同
- 2025年度花卉苗木種植與旅游觀光融合合同
- 2025年度教育培訓(xùn)行業(yè)數(shù)字化轉(zhuǎn)型咨詢與服務(wù)合同協(xié)議
- 蘇人教版道德與法治八年級上冊7.2《合作有智慧》聽課評課記錄
- 2025年度智能機器人制造合作合同范本
- 深度探索與橫向擴展-以某企業(yè)為例的實踐案例分享
- 2025年度人工智能教育與人才培養(yǎng)股權(quán)分配合同范本
- 2025年度職業(yè)培訓(xùn)基地共建與運營管理合同書
- 部編版八年級歷史(下)全冊復(fù)習聽課評課記錄(含教學(xué)反思)
- 生態(tài)農(nóng)業(yè)與環(huán)境保護教育普及
- 部編人教版道德與法治三年級下冊全冊課件
- 《社會主義市場經(jīng)濟理論(第三版)》第一章社會主義市場經(jīng)濟基礎(chǔ)論
- 銀行授信盡職調(diào)查課件
- 河北省縣市鄉(xiāng)鎮(zhèn)衛(wèi)生院社區(qū)衛(wèi)生服務(wù)中心基本公共衛(wèi)生服務(wù)醫(yī)療機構(gòu)名單目錄地址2415家
- (完整版)漢密爾頓焦慮量表(HAMA)
- 編外人員錄用審批表
- 地基轉(zhuǎn)讓合同范文
- 倪海廈《天紀》講義
- 員工住宿人身財產(chǎn)安全的承諾書范文
- 應(yīng)用寫作第一章概述講義
- 側(cè)鉆井工藝技術(shù)簡介
評論
0/150
提交評論