![四川省某重點中學2024屆高三第三次模擬數(shù)學試題_第1頁](http://file4.renrendoc.com/view11/M03/00/0A/wKhkGWWQ-RmAI2hKAAKXH8_hP9M886.jpg)
![四川省某重點中學2024屆高三第三次模擬數(shù)學試題_第2頁](http://file4.renrendoc.com/view11/M03/00/0A/wKhkGWWQ-RmAI2hKAAKXH8_hP9M8862.jpg)
![四川省某重點中學2024屆高三第三次模擬數(shù)學試題_第3頁](http://file4.renrendoc.com/view11/M03/00/0A/wKhkGWWQ-RmAI2hKAAKXH8_hP9M8863.jpg)
![四川省某重點中學2024屆高三第三次模擬數(shù)學試題_第4頁](http://file4.renrendoc.com/view11/M03/00/0A/wKhkGWWQ-RmAI2hKAAKXH8_hP9M8864.jpg)
![四川省某重點中學2024屆高三第三次模擬數(shù)學試題_第5頁](http://file4.renrendoc.com/view11/M03/00/0A/wKhkGWWQ-RmAI2hKAAKXH8_hP9M8865.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省某重點中學2024屆高三第三次模擬數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.2.若函數(shù)的圖象經過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.3.國務院發(fā)布《關于進一步調整優(yōu)化結構、提高教育經費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構統(tǒng)計了年至年國家財政性教育經費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經費的支出持續(xù)增長B.年以來,國家財政性教育經費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經費的支出增長最多的年份是年4.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.5.已知三棱柱()A. B. C. D.6.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.7.設全集,集合,,則()A. B. C. D.8.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.9.若復數(shù)滿足,復數(shù)的共軛復數(shù)是,則()A.1 B.0 C. D.10.設,點,,,,設對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.11.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心12.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.50二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.14.已知平面向量、的夾角為,且,則的最大值是_____.15.拋物線上到其焦點的距離為的點的個數(shù)為________.16.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.18.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.19.(12分)已知函數(shù),,設.(1)當時,求函數(shù)的單調區(qū)間;(2)設方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導函數(shù))20.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.21.(12分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)經常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?(2)①現(xiàn)從所抽取的40歲及以下的網民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調查的40歲以上的網民中隨機抽取3人贈送禮品,記其中經常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63522.(10分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(?。θ我獾?;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
根據(jù)輔助角公式化簡三角函數(shù)式,結合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【題目詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【題目點撥】本題考查了輔助角化簡三角函數(shù)式的應用,三角函數(shù)對稱軸的應用,三角函數(shù)圖像平移變換的應用,屬于中檔題.2、B【解題分析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【題目詳解】由題可知.所以令,得令,得故選:B【題目點撥】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.3、C【解題分析】
觀察圖表,判斷四個選項是否正確.【題目詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【題目點撥】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎.4、D【解題分析】
根據(jù)拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【題目詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【題目點撥】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.5、C【解題分析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=6、D【解題分析】
根據(jù)空間向量的線性運算,用作基底表示即可得解.【題目詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【題目點撥】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.7、B【解題分析】
可解出集合,然后進行補集、交集的運算即可.【題目詳解】,,則,因此,.故選:B.【題目點撥】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎題.8、B【解題分析】
由焦點得拋物線方程,設點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【題目詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【題目點撥】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.9、C【解題分析】
根據(jù)復數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復數(shù)的概念求解即可.【題目詳解】解:∵,∴,則,∴,故選:C.【題目點撥】本題主要考查復數(shù)代數(shù)形式的運算法則,考查共軛復數(shù)的概念,屬于基礎題.10、A【解題分析】
先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【題目詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【題目點撥】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.11、A【解題分析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【題目詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【題目點撥】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.12、C【解題分析】
先寫出的通項公式,再根據(jù)的產生過程,即可求得.【題目詳解】對二項式,其通項公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【題目點撥】本題考查二項展開式中某一項系數(shù)的求解,關鍵是對通項公式的熟練使用,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率14、【解題分析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【題目詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【題目點撥】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.15、【解題分析】
設拋物線上任意一點的坐標為,根據(jù)拋物線的定義求得,并求出對應的,即可得出結果.【題目詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數(shù)為.故答案為:.【題目點撥】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.16、3【解題分析】
在直角三角形中設,,,利用兩角差的正切公式求解.【題目詳解】設,,則,故.故答案為:3【題目點撥】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解題分析】
(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數(shù)量積運算公式,可以求出二面角的余弦值.【題目詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,,,.設平面的一個法向量為,則即,取,得.設平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【題目點撥】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問題.18、(1)x=1(2)證明見解析(3)【解題分析】
(1)令,根據(jù)導函數(shù)確定函數(shù)的單調區(qū)間,求出極小值,進而求解;(2)轉化思想,要證,即證,即證,構造函數(shù)進而求證;(3)不等式對一切正實數(shù)恒成立,,設,分類討論進而求解.【題目詳解】解:(1)令,所以,當時,,在上單調遞增;當時,,在單調遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設,,記,△,①當△時,即時,恒成立,故單調遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設的兩個不等實根分別為,,又,于是,故當時,,從而在單調遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.【題目點撥】(1)考查函數(shù)求導,根據(jù)導函數(shù)確定函數(shù)的單調性,零點;(2)考查轉化思想,構造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調性,函數(shù)的求導;屬于難題.19、(1)在上單調遞增,在上單調遞減.(2)見解析【解題分析】
(1)求出導函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計算,代入后可得結論.【題目詳解】解:,函數(shù)的定義域為,.(1)當時,,由得,由得,故函數(shù)在上單調遞增,在上單調遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【題目點撥】本題考查用導數(shù)研究函數(shù)的單調性,考查導數(shù)的運算、方程根的知識.在可導函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.20、(Ⅰ)(Ⅱ)1【解題分析】
(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【題目詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設,則,所以,所以.【題目點撥】本題主要考查橢圓標準方程的求法以及直線與橢圓的綜合問題,考查學生的運算求解能力.21、(1)不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關;(2)①;②分布列見解析,,【解題分析】
(1)計算再對照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計算3人或4人偶爾或不用信用卡的概率即可.②利用二項分布的特點求解變量的分布列、數(shù)學期望和方差即可.【題目詳解】(1)由列聯(lián)表可知,,因為,所以不能在犯錯誤的概率不超過0.10的前提下認
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年五年級語文上冊第二單元7金蟬脫殼教案設計蘇教版
- 八年級地理上冊 第三章 第三節(jié) 水資源說課稿 新人教版
- 精神科工作計劃范本
- 神經內科護理工作計劃
- 人教版九年級數(shù)學上冊第二十一章一元二次方程《21.2解一元二次方程》第2課時聽評課記錄
- 幼兒園春季工作總結
- 庫房租賃安全合同范本
- 股權增資擴股協(xié)議書范本
- 長安園林EC工程總承包合同范本
- 單位向個人租房協(xié)議書范本
- 部編人教版道德與法治三年級下冊全冊課件
- 《社會主義市場經濟理論(第三版)》第一章社會主義市場經濟基礎論
- 銀行授信盡職調查課件
- 河北省縣市鄉(xiāng)鎮(zhèn)衛(wèi)生院社區(qū)衛(wèi)生服務中心基本公共衛(wèi)生服務醫(yī)療機構名單目錄地址2415家
- (完整版)漢密爾頓焦慮量表(HAMA)
- 編外人員錄用審批表
- 地基轉讓合同范文
- 倪海廈《天紀》講義
- 員工住宿人身財產安全的承諾書范文
- 應用寫作第一章概述講義
- 側鉆井工藝技術簡介
評論
0/150
提交評論