版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省濟(jì)南市歷城二中高三第一次檢測(cè)試題數(shù)學(xué)試題(快班)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)滿足,且,則的最小值是()A. B. C. D.2.設(shè),,,則()A. B. C. D.3.已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知雙曲線的左、右頂點(diǎn)分別是,雙曲線的右焦點(diǎn)為,點(diǎn)在過(guò)且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時(shí),點(diǎn)恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.5.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過(guò)的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,6.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.7.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.8.某幾何體的三視圖如圖所示,則該幾何體的最長(zhǎng)棱的長(zhǎng)為()A. B. C. D.9.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c10.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.11.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.12.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說(shuō)法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等比數(shù)列,,則__________.14.將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域?yàn)開(kāi)_________.15.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_(kāi)____.16.若、滿足約束條件,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.18.(12分)在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上且軸,直線交軸于點(diǎn),,橢圓的離心率為.(1)求橢圓的方程;(2)過(guò)的直線交橢圓于兩點(diǎn),且滿足,求的面積.19.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實(shí)數(shù),的值;(2)當(dāng)時(shí),若有兩個(gè)極值點(diǎn),,且,,若不等式恒成立,試求實(shí)數(shù)m的取值范圍.20.(12分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.21.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.22.(10分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【題目詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時(shí),取得最小值.故選:A.【題目點(diǎn)撥】本題考查代數(shù)式最值的計(jì)算,涉及對(duì)數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計(jì)算能力,屬于中等題.2、A【解題分析】
先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【題目詳解】,,,因此,故選:A.【題目點(diǎn)撥】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.3、D【解題分析】
先將所求問(wèn)題轉(zhuǎn)化為對(duì)任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【題目詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過(guò)原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.4、A【解題分析】
點(diǎn)的坐標(biāo)為,,展開(kāi)利用均值不等式得到最值,將點(diǎn)代入雙曲線計(jì)算得到答案.【題目詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時(shí),的外接圓面積取得最小值,也等價(jià)于取得最大值,因?yàn)?,,所以,?dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,此時(shí)最大,此時(shí)的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【題目點(diǎn)撥】本題考查了求雙曲線方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.5、A【解題分析】
設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【題目詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長(zhǎng)到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【題目點(diǎn)撥】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.6、D【解題分析】
確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【題目詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【題目點(diǎn)撥】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.7、C【解題分析】
令,則,,將指數(shù)式化成對(duì)數(shù)式得、后,然后取絕對(duì)值作差比較可得.【題目詳解】令,則,,,,,因此,.故選:C.【題目點(diǎn)撥】本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.8、D【解題分析】
先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長(zhǎng)度.【題目詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長(zhǎng)棱的長(zhǎng)為故選:D【題目點(diǎn)撥】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.9、A【解題分析】
利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【題目詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【題目點(diǎn)撥】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、D【解題分析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)椋?,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【題目點(diǎn)撥】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.11、B【解題分析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【題目詳解】,設(shè),則,兩式相減得,∴,.故選:B.【題目點(diǎn)撥】本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.12、C【解題分析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【題目詳解】對(duì)于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對(duì)于,平面平面,和平面相交,與是異面直線,正確.對(duì)于,由知,平面平面,與不可能平行,錯(cuò)誤.對(duì)于,因?yàn)椋瑒t到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【題目詳解】設(shè)的公比為,由,得,故.故答案為:【題目點(diǎn)撥】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.14、【解題分析】
根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【題目詳解】函數(shù)的圖像向右平移個(gè)單位得,,,.故答案為:.【題目點(diǎn)撥】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意整體思想的運(yùn)用.15、-1【解題分析】
由題意,令即可得解.【題目詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.16、【解題分析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【題目詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點(diǎn),平移直線,當(dāng)直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故答案為:.【題目點(diǎn)撥】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查線性目標(biāo)函數(shù)的最值問(wèn)題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解題分析】
(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【題目詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【題目點(diǎn)撥】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問(wèn)題,利用分類(lèi)討論是解決本題的較好方法,屬于中檔題.18、(1);(2).【解題分析】
(1)根據(jù)離心率以及,即可列方程求得,則問(wèn)題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,根據(jù)題意中轉(zhuǎn)化出的,即可求得參數(shù),則三角形面積得解.【題目詳解】(1)設(shè),由題意可得.因?yàn)槭堑闹形痪€,且,所以,即,因?yàn)檫M(jìn)而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當(dāng)直線斜率為時(shí),顯然不成立.直線斜率不為時(shí),設(shè)直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開(kāi)得,整理得,所以.即為所求.【題目點(diǎn)撥】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.19、(1);(2).【解題分析】
(1)根據(jù)題意,求得的值,根據(jù)切點(diǎn)在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個(gè)極值點(diǎn),等價(jià)于方程的兩個(gè)正根,,不等式恒成立,等價(jià)于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【題目詳解】(1)由題可知,,,聯(lián)立可得.(2)當(dāng)時(shí),,,有兩個(gè)極值點(diǎn),,且,,是方程的兩個(gè)正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【題目點(diǎn)撥】該題考查的是有關(guān)導(dǎo)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點(diǎn)的個(gè)數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.20、(1)見(jiàn)解析;(2)【解題分析】
(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.【題目詳解】(1)由已知,,所以,設(shè),,當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因?yàn)楹瘮?shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.當(dāng)時(shí),在上單調(diào)遞減,所以一定存在,當(dāng)時(shí),,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是【題目點(diǎn)撥】本題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人房地產(chǎn)抵押借款合同智能審核版
- 2025年度個(gè)人車(chē)庫(kù)買(mǎi)賣(mài)與車(chē)位使用權(quán)過(guò)戶合同2篇
- 二零二五年度模板木枋行業(yè)節(jié)能減排合作合同4篇
- 二零二五年度新型環(huán)保涂料研發(fā)與應(yīng)用推廣合同3篇
- 2025年度模具制造企業(yè)兼職用工合同范本3篇
- 二零二五年度海洋資源開(kāi)發(fā)合作合同范本共3篇
- 2025年度離婚訴訟訴狀撰寫(xiě)規(guī)范解讀4篇
- 2025年度個(gè)人二手房交易合同范本(含裝修款及違約責(zé)任)
- 2025年度農(nóng)業(yè)科技園區(qū)配套設(shè)施建設(shè)合同4篇
- 二零二五年度農(nóng)業(yè)科技培訓(xùn)與推廣合同8篇
- 七年級(jí)下冊(cè)-備戰(zhàn)2024年中考?xì)v史總復(fù)習(xí)核心考點(diǎn)與重難點(diǎn)練習(xí)(統(tǒng)部編版)
- 2024年佛山市勞動(dòng)合同條例
- 污水管網(wǎng)規(guī)劃建設(shè)方案
- 城鎮(zhèn)智慧排水系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 采購(gòu)管理制度及流程采購(gòu)管理制度及流程
- 新修訂藥品GMP中藥飲片附錄解讀課件
- 五年級(jí)美術(shù)下冊(cè)第9課《寫(xiě)意蔬果》-優(yōu)秀課件4人教版
- 節(jié)能降耗課件
- 尼爾森數(shù)據(jù)市場(chǎng)分析報(bào)告
- 氧氣霧化吸入法
- 領(lǐng)導(dǎo)干部個(gè)人有關(guān)事項(xiàng)報(bào)告表(模板)
評(píng)論
0/150
提交評(píng)論