四川省井研中學(xué)2024屆高三第一次五校聯(lián)考數(shù)學(xué)試題_第1頁(yè)
四川省井研中學(xué)2024屆高三第一次五校聯(lián)考數(shù)學(xué)試題_第2頁(yè)
四川省井研中學(xué)2024屆高三第一次五校聯(lián)考數(shù)學(xué)試題_第3頁(yè)
四川省井研中學(xué)2024屆高三第一次五校聯(lián)考數(shù)學(xué)試題_第4頁(yè)
四川省井研中學(xué)2024屆高三第一次五校聯(lián)考數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省井研中學(xué)2024屆高三第一次五校聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,則的大小關(guān)系為()A. B. C. D.2.一小商販準(zhǔn)備用元錢在一批發(fā)市場(chǎng)購(gòu)買甲、乙兩種小商品,甲每件進(jìn)價(jià)元,乙每件進(jìn)價(jià)元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購(gòu)買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件3.已知拋物線:,直線與分別相交于點(diǎn),與的準(zhǔn)線相交于點(diǎn),若,則()A.3 B. C. D.4.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.5.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.6.計(jì)算等于()A. B. C. D.7.命題“”的否定為()A. B.C. D.8.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R(shí),駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個(gè)不同的路口站崗,每個(gè)路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種10.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.211.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]12.過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對(duì)的邊分別為,若,的面積為,則_______,_______.14.已知復(fù)數(shù)(為虛數(shù)單位),則的模為____.15.已知雙曲線的一條漸近線為,則焦點(diǎn)到這條漸近線的距離為_____.16.已知正項(xiàng)等比數(shù)列中,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實(shí)數(shù)x的取值范圍.18.(12分)如圖,橢圓的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,且,為等邊三角形,過(guò)點(diǎn)的直線與橢圓在軸右側(cè)的部分交于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍.19.(12分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:20.(12分)在平面直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線與曲線,分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積21.(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】

根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【題目詳解】因?yàn)椋?因?yàn)?,所以,因?yàn)椋瑸樵龊瘮?shù),所以所以,故選:A.【題目點(diǎn)撥】本題主要考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.2、D【解題分析】

由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【題目詳解】設(shè)購(gòu)買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤(rùn)為元,由題意,畫出可行域如圖所示,顯然當(dāng)經(jīng)過(guò)時(shí),最大.故選:D.【題目點(diǎn)撥】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題,解決此類問(wèn)題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫出可行域,本題是一道基礎(chǔ)題.3、C【解題分析】

根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【題目詳解】顯然直線過(guò)拋物線的焦點(diǎn)如圖,過(guò)A,M作準(zhǔn)線的垂直,垂足分別為C,D,過(guò)M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【題目點(diǎn)撥】本題考查求拋物線的焦點(diǎn)弦的斜率,常見(jiàn)于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.4、B【解題分析】

根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【題目詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【題目點(diǎn)撥】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.5、D【解題分析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【題目詳解】若平面,,,滿足,,則可能相交,故A錯(cuò)誤;命題“:,”的否定為:,,故B錯(cuò)誤;為真,說(shuō)明至少一個(gè)為真命題,則不能推出為真;為真,說(shuō)明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯(cuò)誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【題目點(diǎn)撥】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.6、A【解題分析】

利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【題目詳解】原式.故選:A【題目點(diǎn)撥】本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.7、C【解題分析】

套用命題的否定形式即可.【題目詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【題目點(diǎn)撥】本題考查全稱命題的否定,屬于基礎(chǔ)題.8、C【解題分析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.9、C【解題分析】

先將甲、乙兩人看作一個(gè)整體,當(dāng)作一個(gè)元素,再將這四個(gè)元素分成3個(gè)部分,每一個(gè)部分至少一個(gè),再將這3部分分配到3個(gè)不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【題目詳解】把甲、乙兩名交警看作一個(gè)整體,個(gè)人變成了4個(gè)元素,再把這4個(gè)元素分成3部分,每部分至少有1個(gè)人,共有種方法,再把這3部分分到3個(gè)不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.【題目點(diǎn)撥】本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問(wèn)題,屬于中檔題.10、B【解題分析】

先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【題目詳解】因?yàn)?,所以,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【題目點(diǎn)撥】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.11、B【解題分析】

先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【題目詳解】由題意,集合,所以,則,所以.故選:B.【題目點(diǎn)撥】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.12、A【解題分析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【題目詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【題目點(diǎn)撥】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運(yùn)用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【題目詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【題目點(diǎn)撥】本題主要考查了運(yùn)用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運(yùn)用公式即可求出答案14、【解題分析】,所以.15、2.【解題分析】

由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點(diǎn),利用點(diǎn)到直線的距離公式求解即可.【題目詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點(diǎn)為焦點(diǎn)到這條漸近線的距離為:本題正確結(jié)果:【題目點(diǎn)撥】本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點(diǎn)到直線距離公式的考查,屬于基礎(chǔ)題.16、【解題分析】

利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【題目詳解】由,所以,解得.,所以,所以.故答案為:【題目點(diǎn)撥】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、≤x≤【解題分析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng)(a+b)·(a-b)≥0時(shí)取等號(hào),∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.18、(1);(2).【解題分析】

(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)①當(dāng)直線斜率不存在時(shí),易求坐標(biāo),從而得到所求面積;②當(dāng)直線的斜率存在時(shí),設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論可求得關(guān)于的表達(dá)式,采用換元法將問(wèn)題轉(zhuǎn)化為,的值域的求解問(wèn)題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【題目詳解】(1),,為等邊三角形,,橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)四邊形的面積為.①當(dāng)直線的斜率不存在時(shí),可得,,.②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【題目點(diǎn)撥】本題考查直線與橢圓的綜合應(yīng)用問(wèn)題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問(wèn)題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問(wèn)題轉(zhuǎn)化為函數(shù)值域的求解問(wèn)題.19、(I)詳見(jiàn)解析;(II)2【解題分析】

(I)求導(dǎo)得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【題目詳解】(I)f(x)=ex-ax當(dāng)a≤0時(shí),f'(x)=e當(dāng)a>0時(shí),f'(x)=ex-a=0,x=lna當(dāng)x∈lna,+∞時(shí),綜上所述:a≤0時(shí),fx在R上單調(diào)遞增;a>0時(shí),fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當(dāng)x∈0,+∞上時(shí),x2+1f'x在x∈0,+∞上單調(diào)遞增,故fx在0,12上單調(diào)遞減,在1綜上所述:a+5b的最大值為【題目點(diǎn)撥】本題考查了函數(shù)單調(diào)性,函數(shù)的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1),;(2).【解題分析】

(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長(zhǎng),再求高,最后求的面積.【題目詳解】(1)曲線的極坐標(biāo)方程為:,因?yàn)榍€的普通方程為:,曲線的極坐標(biāo)方程為;(2)由(1)得:點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,,點(diǎn)到射線的距離為的面積為.【題目點(diǎn)撥】本題考查普通方程、參數(shù)方程與極坐標(biāo)方程之間的互化,同時(shí)也考查了利用極坐標(biāo)方程求解面積問(wèn)題,考查計(jì)算能力,屬于中等題.21、(1);(2).【解題分析】

(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡(jiǎn)邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【題目詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當(dāng)且僅當(dāng)時(shí)取等號(hào))即三角形面積的最大值為:【題目點(diǎn)撥】本題考查解三角形的相關(guān)知識(shí),涉及到正弦定理化簡(jiǎn)邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導(dǎo)公式的應(yīng)用等知識(shí),屬于??碱}型.22、(1)的極坐標(biāo)方程為,普通方程為;(2)【解題分析】

(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運(yùn)用圖像的平移得依題意得曲線的普通方程為,利用極坐標(biāo)與平面直角坐標(biāo)互化的公式可得方程;(2)法一:將代入曲線的極坐標(biāo)方程得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論