北京市西城區(qū)月壇中學(xué)2024屆高考數(shù)學(xué)試題押題試卷含解析_第1頁(yè)
北京市西城區(qū)月壇中學(xué)2024屆高考數(shù)學(xué)試題押題試卷含解析_第2頁(yè)
北京市西城區(qū)月壇中學(xué)2024屆高考數(shù)學(xué)試題押題試卷含解析_第3頁(yè)
北京市西城區(qū)月壇中學(xué)2024屆高考數(shù)學(xué)試題押題試卷含解析_第4頁(yè)
北京市西城區(qū)月壇中學(xué)2024屆高考數(shù)學(xué)試題押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市西城區(qū)月壇中學(xué)2024屆高考數(shù)學(xué)試題押題試卷含解析注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱(chēng)為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.2.某個(gè)小區(qū)住戶(hù)共200戶(hù),為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶(hù)進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過(guò)15m3的住戶(hù)的戶(hù)數(shù)為()A.10 B.50 C.60 D.1403.設(shè)雙曲線(xiàn)(a>0,b>0)的一個(gè)焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線(xiàn)的一條漸近線(xiàn)被圓x2+y2﹣2cx=0截得的弦長(zhǎng)為2,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程為()A. B.C. D.4.已知實(shí)數(shù)滿(mǎn)足,則的最小值為()A. B. C. D.5.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問(wèn)題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問(wèn)題的近似解,故又稱(chēng)統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.6.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.7.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.8.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.9.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.210.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或11.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}12.已知命題,,則是()A., B.,.C., D.,.二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,分別是的中點(diǎn).則下述結(jié)論:①四面體的體積為;②異面直線(xiàn)所成角的正弦值為;③四面體外接球的表面積為;④若用一個(gè)與直線(xiàn)垂直,且與四面體的每個(gè)面都相交的平面去截該四面體,由此得到一個(gè)多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫(xiě)所有正確結(jié)論的編號(hào))14.能說(shuō)明“在數(shù)列中,若對(duì)于任意的,,則為遞增數(shù)列”為假命題的一個(gè)等差數(shù)列是______.(寫(xiě)出數(shù)列的通項(xiàng)公式)15.函數(shù)過(guò)定點(diǎn)________.16.某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對(duì)值的1.4倍作為其獎(jiǎng)金.若隨機(jī)變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎(jiǎng)金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,,,證明:(1);(2).18.(12分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對(duì)年銷(xiāo)售額y(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷(xiāo)售額yi的數(shù)據(jù),i=1,2,?,12,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷(xiāo)售額y需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e19.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱(chēng)為函數(shù)的局部對(duì)稱(chēng)點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對(duì)稱(chēng)點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)m的取值范圍.20.(12分)已知中心在原點(diǎn)的橢圓的左焦點(diǎn)為,與軸正半軸交點(diǎn)為,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作斜率為、的兩條直線(xiàn)分別交于異于點(diǎn)的兩點(diǎn)、.證明:當(dāng)時(shí),直線(xiàn)過(guò)定點(diǎn).21.(12分)設(shè)點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且和直線(xiàn)相切.記動(dòng)圓的圓心的軌跡為曲線(xiàn).(1)求曲線(xiàn)的方程;(2)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),且直線(xiàn)與軸交于點(diǎn),設(shè),,求證:為定值.22.(10分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為T(mén)n,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【題目詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線(xiàn)就是外接球直徑,則,那么.故選:B【題目點(diǎn)撥】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.2、C【解題分析】從頻率分布直方圖可知,用水量超過(guò)15m3的住戶(hù)的頻率為,即分層抽樣的50戶(hù)中有0.3×50=15戶(hù)住戶(hù)的用水量超過(guò)15立方米所以小區(qū)內(nèi)用水量超過(guò)15立方米的住戶(hù)戶(hù)數(shù)為,故選C3、C【解題分析】

由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線(xiàn)方程.【題目詳解】由題得①又該雙曲線(xiàn)的一條漸近線(xiàn)方程為,且被圓x2+y2﹣2cx=0截得的弦長(zhǎng)為2,所以②又③由①②③可得:,,所以雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.故選:C【題目點(diǎn)撥】本題主要考查了雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.4、A【解題分析】

所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【題目詳解】解:因?yàn)闈M(mǎn)足,則,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:.【題目點(diǎn)撥】本題考查通過(guò)拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.5、A【解題分析】

計(jì)算出黑色部分的面積與總面積的比,即可得解.【題目詳解】由,∴.故選:A【題目點(diǎn)撥】本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.6、D【解題分析】

設(shè)圓錐的母線(xiàn)長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【題目詳解】設(shè)圓錐的母線(xiàn)長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【題目點(diǎn)撥】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.7、D【解題分析】試題分析:由,得,則,故選D.考點(diǎn):1、復(fù)數(shù)的運(yùn)算;2、復(fù)數(shù)的模.8、D【解題分析】

直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【題目詳解】∵∴其共軛復(fù)數(shù)為.故選:D【題目點(diǎn)撥】熟悉復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的性質(zhì).9、D【解題分析】

如圖所示建立直角坐標(biāo)系,設(shè),則,計(jì)算得到答案.【題目詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時(shí)等號(hào)成立.故選:.【題目點(diǎn)撥】本題考查了向量的計(jì)算,建立直角坐標(biāo)系利用坐標(biāo)計(jì)算是解題的關(guān)鍵.10、C【解題分析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿(mǎn)足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.11、A【解題分析】

解出集合A和B即可求得兩個(gè)集合的并集.【題目詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【題目點(diǎn)撥】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫(xiě)出集合中的元素.12、B【解題分析】

根據(jù)全稱(chēng)命題的否定為特稱(chēng)命題,得到結(jié)果.【題目詳解】根據(jù)全稱(chēng)命題的否定為特稱(chēng)命題,可得,本題正確選項(xiàng):【題目點(diǎn)撥】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①③④.【解題分析】

補(bǔ)圖成長(zhǎng)方體,在長(zhǎng)方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線(xiàn)的夾角,作出截面即可計(jì)算截面面積的最值.【題目詳解】根據(jù)四面體特征,可以補(bǔ)圖成長(zhǎng)方體設(shè)其邊長(zhǎng)為,,解得補(bǔ)成長(zhǎng),寬,高分別為的長(zhǎng)方體,在長(zhǎng)方體中:①四面體的體積為,故正確②異面直線(xiàn)所成角的正弦值等價(jià)于邊長(zhǎng)為的矩形的對(duì)角線(xiàn)夾角正弦值,可得正弦值為,故錯(cuò);③四面體外接球就是長(zhǎng)方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線(xiàn)與所成的角為,則,算得,.故正確.故答案為:①③④.【題目點(diǎn)撥】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線(xiàn)夾角和截面面積最值,關(guān)鍵在于熟練掌握點(diǎn)線(xiàn)面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問(wèn)題的常用方法,平常需要積累常見(jiàn)幾何體的補(bǔ)圖方法.14、答案不唯一,如【解題分析】

根據(jù)等差數(shù)列的性質(zhì)可得到滿(mǎn)足條件的數(shù)列.【題目詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說(shuō)明原命題是假命題.所以,答案不唯一,符合條件即可.【題目點(diǎn)撥】本題考查對(duì)等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)遞減的數(shù)列,還需檢驗(yàn)是否滿(mǎn)足命題中的條件,屬基礎(chǔ)題.15、【解題分析】

令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【題目詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過(guò)定點(diǎn).故答案為:【題目點(diǎn)撥】此題考查函數(shù)的定點(diǎn)問(wèn)題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見(jiàn)函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.16、20.2【解題分析】

分別求出隨機(jī)變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計(jì)算得解.【題目詳解】設(shè)a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【題目點(diǎn)撥】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計(jì)算期望和方差.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解題分析】

(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開(kāi)即可得證.【題目詳解】證明:(1),,,(當(dāng)且僅當(dāng)時(shí)取等號(hào)).(2),,,,,,,.【題目點(diǎn)撥】本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題.18、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解題分析】

(1)由相關(guān)系數(shù)求出兩個(gè)系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線(xiàn)性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【題目詳解】本小題主要考查回歸分析等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識(shí),考查統(tǒng)計(jì)與概率思想、分類(lèi)與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷(xiāo)售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預(yù)測(cè)下一年的研發(fā)資金投入量約是32.99億元【題目點(diǎn)撥】本小題主要考查拋物線(xiàn)的定義、拋物線(xiàn)的標(biāo)準(zhǔn)方程、直線(xiàn)與拋物線(xiàn)的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性19、(1)見(jiàn)解析(2)(3)【解題分析】

(1)若函數(shù)有局部對(duì)稱(chēng)點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【題目詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對(duì)稱(chēng)點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對(duì)稱(chēng)點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿(mǎn)足條件:,即,得【題目點(diǎn)撥】本題考查函數(shù)的局部對(duì)稱(chēng)點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問(wèn)題,考查轉(zhuǎn)化思想與運(yùn)算能力.20、(1);(2)見(jiàn)解析.【解題分析】

(1)在中,計(jì)算出的值,可得出的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,設(shè)直線(xiàn)的方程為,將該直線(xiàn)方程與橢圓方程聯(lián)立,列出韋達(dá)定理,根據(jù)已知條件得出,利用韋達(dá)定理和斜率公式化簡(jiǎn)得出與所滿(mǎn)足的關(guān)系式,代入直線(xiàn)的方程,即可得出直線(xiàn)所過(guò)定點(diǎn)的坐標(biāo).【題目詳解】(1)在中,,,,,,,,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)由題不妨設(shè),設(shè)點(diǎn),聯(lián)立,消去化簡(jiǎn)得,且,,,,,∴代入,化簡(jiǎn)得,化簡(jiǎn)得,,,,直線(xiàn),因此,直線(xiàn)過(guò)定點(diǎn).【題目點(diǎn)撥】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中直線(xiàn)過(guò)定點(diǎn)的問(wèn)題,考查計(jì)算能力,屬于中等題.21、(1);(2)見(jiàn)解析.【解題分析】

(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn),由此可得曲線(xiàn)的方程;(2)設(shè)直線(xiàn)方程為,,則,設(shè),由直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計(jì)算,并代入,可得結(jié)論.【題目詳解】(1)設(shè)動(dòng)圓圓心,由拋物線(xiàn)定義知:點(diǎn)軌跡是以為焦點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn),設(shè)其方程為,則,解得.∴曲線(xiàn)的方程為;(2)證明:設(shè)直線(xiàn)方程為,,則,設(shè),由得,①,則,,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論