版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2.3.2平面與平面垂直的判定[學(xué)習(xí)目標(biāo)]1.理解二面角的有關(guān)概念,會求簡單的二面角的大小.2.理解兩平面垂直的定義.3.掌握兩平面垂直的判定定理.[知識鏈接]1.直線與平面垂直:如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線l與平面α互相垂直.2.直線與平面垂直的判定定理:如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直.3.直線和平面所成的角:平面的一條斜線和它在平面上的射影所成的銳角.[預(yù)習(xí)導(dǎo)引]1.二面角(1)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角.這條直線叫做二面角的棱.這兩個(gè)半平面叫做二面角的面.如圖(1)可記作:二面角αlβ或PABQ或PlQ.如圖(2)對二面角αlβ若有:①O∈l;②OA?α,OB?β;③OA⊥l,OB⊥l.則∠AOB就叫做二面角αlβ的平面角.2.平面與平面的垂直(1)定義:如果兩個(gè)平面相交,且它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直.(2)畫法:記作:α⊥β.(3)面面垂直的判定定理文字語言:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.圖形語言:如圖所示符號語言:eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥β,a?α))?α⊥β.要點(diǎn)一二面角及其平面角的概念例1下列命題中:①兩個(gè)相交平面組成的圖形叫做二面角;②異面直線a,b分別和一個(gè)二面角的兩個(gè)面垂直,則a,b組成的角與這個(gè)二面角的平面角相等或互補(bǔ);③二面角的平面角是從棱上一點(diǎn)出發(fā),分別在兩個(gè)面內(nèi)作射線所成的角的最小角;④二面角的大小與其平面角的頂點(diǎn)在棱上的位置沒有關(guān)系.其中正確的是()A.①③B.②④C.③④D.①②答案B解析由二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,所以①不對,實(shí)質(zhì)上它共有四個(gè)二面角;由a,b分別垂直于兩個(gè)面,則a,b都垂直于二面角的棱,故②正確;③中所作的射線不一定垂直于二面角的棱,故③不對;由定義知④正確.故選B.規(guī)律方法1.要注意區(qū)別二面角與兩相交平面所成的角并不一致.2.要注意二面角的平面角與頂點(diǎn)在棱上且角兩邊分別在二面角面上的角的聯(lián)系與區(qū)別.3.可利用實(shí)物模型,作圖幫助判斷.跟蹤演練1若一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,那么這兩個(gè)二面角()A.相等B.互補(bǔ)C.相等或互補(bǔ)D.關(guān)系無法確定答案D解析如圖所示,平面EFDG⊥平面ABC,當(dāng)平面HDG繞DG轉(zhuǎn)動(dòng)時(shí),平面HDG始終與平面BCD垂直,所以兩個(gè)二面角的大小關(guān)系不確定,因?yàn)槎娼荋DGF的大小不確定.要點(diǎn)二面面垂直的判定與證明例2如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上異于A、B的任意一點(diǎn),求證:平面PAC⊥平面PBC.證明連接AC,BC,則BC⊥AC,又PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,而PA∩AC=A,∴BC⊥平面PAC,又BC?平面PBC,∴平面PAC⊥面PBC.規(guī)律方法面面垂直的判定定理是證明面面垂直的常用方法,即要證面面垂直,只需轉(zhuǎn)證線面垂直,關(guān)鍵是在其中一個(gè)平面內(nèi)尋找一直線與另一個(gè)平面垂直.跟蹤演練2如圖,四棱錐PABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.求證:平面AEC⊥平面PDB.證明∵AC⊥BD,AC⊥PD,PD,BD為平面PDB內(nèi)兩條相交直線,∴AC⊥平面PDB.又∵AC?平面AEC,∴平面AEC⊥平面PDB.要點(diǎn)三二面角例3如圖,在正方體ABCDA1B1C1D1中,求二面角BA1C1B1的正切值.解取A1C1的中點(diǎn)O,連接B1O,BO.由題意知B1O⊥A1C1,又BA1=BC1,O為A1C1的中點(diǎn),所以BO⊥A1C1,所以∠BOB1即是二面角BA1C1B1的平面角.因?yàn)锽B1⊥平面A1B1C1D1,OB1?平面A1B1C1D1,所以BB1⊥OB1.設(shè)正方體的棱長為a,則OB1=eq\f(\r(2),2)a,在Rt△BB1O中,tan∠BOB1=eq\f(BB1,OB1)=eq\f(a,\f(\r(2),2)a)=eq\r(2),所以二面角BA1C1B1的正切值為eq\r(2).規(guī)律方法1.求二面角的大小關(guān)鍵是要找出或作出平面角.再把平面角放在三角形中,利用解三角形得到平面角的大小或三角函數(shù)值,其步驟為作角→證明→計(jì)算.2.為在適當(dāng)位置作出平面角要注意觀察二面角兩個(gè)面的圖形特點(diǎn),如是否為等腰三角形等.跟蹤演練3已知正四棱錐(底面為正方形各側(cè)面為全等的等腰三角形)的體積為12,底面對角線的長為2eq\r(6),求側(cè)面與底面所成的二面角.解設(shè)正四棱錐為SABCD,如圖所示,高為h,底面邊長為a,則2a2=(2eq\r(6))2,∴a2=12.又eq\f(1,3)a2h=12,∴h=eq\f(36,a2)=3.設(shè)O為S在底面上的投影,作OE⊥CD于E,連接SE,可知SE⊥CD,∠SEO為所求二面角的平面角.tan∠SEO=eq\f(h,\f(a,2))=eq\f(3×2,\r(12))=eq\f(2×3,2\r(3))=eq\r(3),∴∠SEO=60°.∴側(cè)面與底面所成二面角的大小為60°.1.已知l⊥α,則過l與α垂直的平面()A.有1個(gè)B.有2個(gè)C.有無數(shù)個(gè)D.不存在答案C解析由面面垂直的判定定理知,凡過l的平面都垂直于平面α,這樣的平面有無數(shù)個(gè).2.對于直線m,n和平面α,β,能得出α⊥β的一個(gè)條件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n?αC.m∥n,n⊥β,m?αD.m∥n,m⊥α,n⊥β答案C解析∵n⊥β,m∥n,∴m⊥β,又m?α,由面面垂直的判定定理,∴α⊥β.3.空間四邊形ABCD中,若AD⊥BC,BD⊥AD,那么有()A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC答案D解析∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BCD.又∵AD?平面ADC,∴平面ADC⊥平面DBC.4.已知PA⊥矩形ABCD所在的平面(如圖所示),圖中互相垂直的平面有()A.1對B.2對C.3對D.5對答案D解析∵DA⊥AB,DA⊥PA,AB∩PA=A,∴DA⊥平面PAB,同樣BC⊥平面PAB,又易知AB⊥平面PAD,∴DC⊥平面PAD.∴平面PAD⊥平面ABCD,平面PAD⊥平面PAB,平面PBC⊥平面PAB,平面PAB⊥平面ABCD,平面PDC⊥平面PAD,共5對.5.如圖,正方體ABCDA1B1C1D1中,截面C1D1AB與底面ABCD所成二面角C1ABC的大小為________.答案45°解析∵AB⊥BC,AB⊥BC1,∴∠C1BC為二面角C1ABC的平面角,其大小為45°.1.證明兩個(gè)平面垂直的主要途徑:(1)利用面面垂直的定義;(2)面面垂直的判定定理,即如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.2.證明兩個(gè)平面垂直,通常是通過證明線線垂直→線面垂直→面面垂直來實(shí)現(xiàn)的,因此,在關(guān)于垂直問題的論證中要注意線線垂直、線面垂直、面面垂直的相互轉(zhuǎn)化.每一垂直的判定都是從某一垂直開始轉(zhuǎn)向另一垂直,最終達(dá)到目的.3.下面的結(jié)論,有助于判斷面面垂直:(1)m∥n,m⊥α,n?β?α⊥β;(2)m⊥α,n⊥β,m⊥n?α⊥β;(3)α∥β,γ⊥α?γ⊥β.一、基礎(chǔ)達(dá)標(biāo)1.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ答案A解析B錯(cuò),有可能m與β相交;C錯(cuò),有可能m與β相交;D錯(cuò),有可能α與β相交.2.從空間一點(diǎn)P向二面角αlβ的兩個(gè)面α,β分別作垂線PE,PF,E,F(xiàn)為垂足,若∠EPF=60°,則二面角的平面角的大小是()A.60°B.120°C.60°或120°D.不確定答案C解析若點(diǎn)P在二面角內(nèi),則二面角的平面角為120°;若點(diǎn)P在二面角外,則二面角的平面角為60°.3.如圖,在立體圖形DABC中,若AB=CB,AD=CD,E是AC的中點(diǎn),則下列說法中正確的是()A.平面ABC⊥平面ABDB.平面ABC⊥平面BDE,且平面ADC⊥平面BDEC.平面ABD⊥平面BDCD.平面ABC⊥平面ADC,且平面ADC⊥平面BDE答案B解析由條件得AC⊥DE,AC⊥BE,又DE∩BE=E,∴AC⊥平面BDE,又AC?面ADC,AC?面ABC.∴平面ABC⊥平面BDE,平面ADC⊥平面BDE,故選B.4.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為a的正方形,側(cè)棱PA=a,PB=PD=eq\r(2)a,則它的5個(gè)面中互相垂直的面有()A.2對B.3對C.4對D.5對答案D5.如圖,AB是圓的直徑,PA垂直于圓所在的平面,C是圓上一點(diǎn)(不同于A、B)且PA=AC,則二面角PBCA的大小為()A.60°B.30°C.45°D.15°答案C解析由條件得:PA⊥BC,AC⊥BC又PA∩AC=C,∴BC⊥平面PAC,∴∠PCA為二面角PBCA的平面角.在Rt△PAC中,由PA=AC得∠PCA=45°,∴C對.6.已知三棱錐DABC的三個(gè)側(cè)面與底面全等,且AB=AC=eq\r(3),BC=2,則二面角DBCA的大小為________.答案90°解析如圖,由題意知AB=AC=BD=CD=eq\r(3),BC=AD=2.取BC的中點(diǎn)E,連接DE,AE,則AE⊥BC,DE⊥BC,所以∠DEA為所求二面角的平面角.易得AE=DE=eq\r(2),又AD=2,所以∠DEA=90°.7.如圖,在底面為直角梯形的四棱錐PABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,AC∩BD=E,AD=2,AB=2eq\r(3),BC=6.求證:平面PBD⊥平面PAC.證明∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.又tan∠ABD=eq\f(AD,AB)=eq\f(\r(3),3),tan∠BAC=eq\f(BC,AB)=eq\r(3),∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC.又PA∩AC=A,∴BD⊥平面PAC.又BD?平面PBD,∴平面PBD⊥平面PAC.二、能力提升8.在正四面體PABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是()A.BC∥面PDFB.DF⊥面PAEC.面PDF⊥面ABCD.面PAE⊥面ABC答案C解析如圖所示,∵BC∥DF,∴BC∥平面PDF.∴A正確.由BC⊥PE,BC⊥AE,∴BC⊥平面PAE.∴DF⊥平面PAE.∴B正確.∴平面ABC⊥平面PAE(BC⊥平面PAE).∴D正確.9.如圖所示,已知六棱錐PABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直線BC∥平面PAED.直線PD與平面ABC所成的角為45°答案D解析∵PA⊥平面ABC,∴∠ADP是直線PD與平面ABC所成的角.∵六邊形ABCDEF是正六邊形,∴AD=2AB,即tan∠ADP=eq\f(PA,AD)=eq\f(2AB,2AB)=1,∴直線PD與平面ABC所成的角為45°,選D.10.在邊長為1的菱形ABCD中,∠ABC=60°,把菱形沿對角線AC折起,使折起后BD=eq\f(\r(3),2),則二面角BACD的大小為________.答案60°解析如圖所示,由二面角的定義知∠BOD即為二面角的平面角.∵DO=OB=BD=eq\f(\r(3),2),∴∠BOD=60°.11.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),M,N分別是A1B1,BC,C1D1和B1C1的中點(diǎn).(1)求證:平面MNF⊥平面ENF;(2)求二面角M-EF-N的平面角的正切值.(1)證明連接MN,∵N,F(xiàn)均為所在棱的中點(diǎn),∴NF⊥平面A1B1C1D1.而MN?平面A1B1C1D1,∴NF⊥MN.又∵M(jìn),E均為所在棱的中點(diǎn),∴△C1MN和△B1NE均為等腰直角三角形.∴∠MNC1=∠B1NE=45°,∴∠MNE=90°,∴MN⊥NE.∴MN⊥平面NEF.而MN?平面MNF,∴平面MNF⊥平面NEF.(2)解在平面NEF中,過點(diǎn)N作NG⊥EF于點(diǎn)G,連接MG.由(1)得知MN⊥平面NEF,又EF?平面NEF,∴MN⊥EF.又MN∩NG=N,∴EF⊥平面MNG,∴EF⊥MG.∴∠MGN為二面角M-EF-N的平面角.設(shè)該正方體的棱長為2.在Rt△NEF中,NG=eq\f(NE·NF,EF)=eq\f(2\r(3),3),∴在Rt△MNG中,tan∠MGN=eq\f(MN,NG)=eq\f(\r(2),\f(2\r(3),3))=eq\f(\r(6),2).∴二面角M-EF-N的平面角的正切值為eq\f(\r(6),2).三、探究與創(chuàng)新12.已知三棱錐PABC中,∠ACB=90°,BC=4,AB=20.D為AB的中點(diǎn),且△PDB為等邊三角形,PA⊥PC.(1)求證:平面PAC⊥平面ABC;(2)求二面角DAPC的正弦值.(1)證明在Rt△ACB中,D是斜邊AB的中點(diǎn),所以BD=DA.因?yàn)椤鱌DB是等邊三角形,所以BD=DP=BP,則BD=DA=DP,因此△APB為直角三角形,即PA⊥BP.又PA⊥PC,PC∩BP=P,所以PA⊥平面PCB.因?yàn)锽C?平面PCB,所以PA⊥BC.又AC⊥BC,PA∩AC=A,所以BC⊥平面PAC,因?yàn)锽C?平面ABC,所以平面PAC⊥平面ABC.(2)解由(1)知PA⊥PB及已知PA⊥PC,故∠BPC即為二面角DAPC的平面角.由(1)知BC⊥平面PAC,則BC⊥PC.在Rt△BPC中,BC=4,BP=BD=10,所以sin∠BPC=eq\f(BC,BP)=eq\f(4,10)=eq\f(2,5),即二面角DAPC的正弦值為eq\f(2,5).13.如圖所示,四棱錐PABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=eq\r(3).(1)證明:平面PBE⊥平面PAB;(2)求二面角ABEP的大?。?1)證明如圖所示,連接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等邊三角形.因?yàn)镋是CD的中點(diǎn),所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因?yàn)镻A⊥平面ABCD,BE?平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE?平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知BE⊥平面PAB,PB?平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角ABEP的平面角.在Rt△PAB中,tan∠PBA=eq\f(PA,AB)=eq\r(3),∠PBA=60°,故二面角ABEP的大小是60°.下課啦,咱們來聽個(gè)小故事吧:活動(dòng)目的:教育學(xué)生懂得“水”這一寶貴資源對于我們來說是極為珍貴的,每個(gè)人都要保護(hù)它,做到節(jié)約每一滴水,造福子孫萬代。
活動(dòng)過程:
1.主持人上場,神秘地說:“我讓大家猜個(gè)謎語,你們愿意嗎?”大家回答:“愿意!”
主持人口述謎語:
“雙手抓不起,一刀劈不開,
煮飯和洗衣,都要請它來?!?/p>
主持人問:“誰知道這是什么?”生答:“水!”
一生戴上水的頭飾上場說:“我就是同學(xué)們猜到的水。聽大家說,我的用處可大了,是真的嗎?”
主持人:我宣布:“水”是萬物之源主題班會現(xiàn)在開始。
水說:“同學(xué)們,你們知道我有多重要嗎?”齊答:“知道?!?/p>
甲:如果沒有水,我們?nèi)祟惥蜔o法生存。
小熊說:我們動(dòng)物可喜歡你了,沒有水我們會死掉的。
花說:我們花草樹木更喜歡和你做朋友,沒有水,我們早就枯死了,就不能為美化環(huán)境做貢獻(xiàn)了。
主持人:下面請聽快板《水的用處真叫大》
竹板一敲來說話,水的用處真叫大;
洗衣服,洗碗筷,洗臉洗手又洗腳,
煮飯洗菜又沏茶,生活處處離不開它。
栽小樹,種莊稼,農(nóng)民伯伯把它夸;
魚兒河馬大對蝦,日日夜夜不離它;
采煤發(fā)電要靠它,京城美化更要它。
主持人:同學(xué)們,聽完了這個(gè)快板,你們說水的用處大不大?
甲說:看了他們的快板表演,我知道日常生活種離不了水。
乙說:看了表演后,我知道水對莊稼、植物是非常重要的。
丙說:我還知道水對美化城市起很大作用。
2.主持人:水有這么多用處,你們該怎樣做呢?
(1)(生):我要節(jié)約用水,保護(hù)水源。
(2)(生):我以前把水壺剩的水隨便就到掉很不對,以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前幾天,我看到了學(xué)校電視里轉(zhuǎn)播的“水日談水”的節(jié)目,很受教育,同學(xué)們看得可認(rèn)真了,知道了我們北京是個(gè)缺水城市,我們再不能浪費(fèi)水了。
(4)(生):我要用洗腳水沖廁所。
3.主持人:大家談得都很好,下面誰想出題考考大家,答對了請給點(diǎn)掌聲。
(1)(生):小明讓爸爸刷車時(shí)把水龍頭開小點(diǎn),請回答對不對。
(2)(生):小蘭告訴奶奶把洗菜水別到掉,留沖廁所用。
(3)一生跑上說:主持人請把手機(jī)借我用用好嗎?我想現(xiàn)在就給姥姥打個(gè)電話,告訴她做飯時(shí)別把淘米水到掉了,用它沖廁所或澆花用。(電話內(nèi)容略寫)
(4)一生說:主持人我們想給大家表演一個(gè)小品行嗎?
主持人:可以,大家歡迎!請看小品《這又不是我家的》
大概意思是:學(xué)校男廁所便池堵了,水龍頭又大開,水流滿地。學(xué)生甲乙丙三人分別上廁所,看見后又皺眉又罵,但都沒有關(guān)水管,嘴里還念念有詞,又說:“反正不是我家的?!?/p>
旁白:“那又是誰家的呢?”
主持人:看完這個(gè)小品,你們有什么想法嗎?誰愿意給大家說說?
甲:剛才三個(gè)同學(xué)太自私了,公家的水也是大家的,流掉了多可惜,應(yīng)該把水龍頭關(guān)上。
乙:上次我去廁所看見水龍頭沒關(guān)就主動(dòng)關(guān)上了。
主持人:我們給他鼓鼓掌,今后你們發(fā)現(xiàn)水龍頭沒關(guān)會怎樣做呢?
齊:主動(dòng)關(guān)好。
小記者:同學(xué)們,你們好!我想打擾一下,聽說你們正在開班會,我想采訪一下,行嗎?
主持人:可以。
小記者:這位同學(xué),你好!通過參加今天的班會你有什么想法,請談?wù)労脝幔?/p>
答:我要做節(jié)水的主人,不浪費(fèi)一滴水。
小記者:請這位同學(xué)談?wù)労脝幔?/p>
答:今天參加班會我知道了節(jié)約每一滴水要從我們每個(gè)人做起。我想把每個(gè)廁所都貼上“節(jié)約用水”的字條,這樣就可以提醒同學(xué)們節(jié)約用水了。
小記者:你們談得很好,我的收獲也很大。我還有新任務(wù)先走了,同學(xué)們再見!
水跑上來說:同學(xué)們,今天我很高興,我“水伯伯”今天很開心,你們知道了有了我就有了生命的源泉,請你們今后一定節(jié)約用水呀!讓人類和動(dòng)物、植物共存,迎接美好的明天!
主持人:你們還有發(fā)言的嗎?
答:有。
生:我代表人們謝謝你,水伯伯,節(jié)約用水就等于保護(hù)我們?nèi)祟愖约骸?/p>
動(dòng)物:小熊上場說:我代表動(dòng)物家族謝謝你了,我們也會保護(hù)你的!
花草樹木跑上場說:我們也不會忘記你的貢獻(xiàn)!
水伯伯:(手舞足蹈地跳起了舞蹈)……同學(xué)們的笑聲不斷。
主持人:水伯伯,您這是干什么呢?
水伯伯:因?yàn)槲姨吲d了,今后還請你們多關(guān)照我呀!
主持人:水伯伯,請放心,今后我們一定會做得更好!再見!
4.主持人:大家歡迎老師講話!
同學(xué)們,今天我們召開的班會非常生動(dòng),非常有意義。水是生命之源,無比珍貴,愿同學(xué)們能加倍珍惜它,做到節(jié)約一滴水,造福子孫后代。
5.主持人宣布:“水”是萬物之源主題班會到此結(jié)束。
6.活動(dòng)效果:
此次活動(dòng)使學(xué)生明白了節(jié)約用水的道理,浪費(fèi)水的現(xiàn)象減少了,宣傳節(jié)約用水的人增多了,人人爭做節(jié)水小標(biāo)兵
活動(dòng)目的:教育學(xué)生懂得“水”這一寶貴資源對于我們來說是極為珍貴的,每個(gè)人都要保護(hù)它,做到節(jié)約每一滴水,造福子孫萬代。
活動(dòng)過程:
1.主持人上場,神秘地說:“我讓大家猜個(gè)謎語,你們愿意嗎?”大家回答:“愿意!”
主持人口述謎語:
“雙手抓不起,一刀劈不開,
煮飯和洗衣,都要請它來?!?/p>
主持人問:“誰知道這是什么?”生答:“水!”
一生戴上水的頭飾上場說:“我就是同學(xué)們猜到的水。聽大家說,我的用處可大了,是真的嗎?”
主
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江理工大學(xué)《語文教學(xué)理論與實(shí)踐(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州輕工業(yè)大學(xué)《軟件開發(fā)管理程》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)學(xué)校章程
- 浙江電力職業(yè)技術(shù)學(xué)院《電視原理B》2023-2024學(xué)年第一學(xué)期期末試卷
- 漳州職業(yè)技術(shù)學(xué)院《信號與系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 生產(chǎn)調(diào)度與庫存管理協(xié)同效應(yīng)
- 財(cái)務(wù)年終總結(jié)報(bào)告模板
- 雙十一新媒體營銷報(bào)告模板
- 生物醫(yī)療研究總結(jié)模板
- 房地產(chǎn)交易制度政策-《房地產(chǎn)基本制度與政策》模擬試卷2
- DB11∕T 353-2021 城市道路清掃保潔質(zhì)量與作業(yè)要求
- 中醫(yī)特色科室創(chuàng)建
- 多旋翼無人機(jī)駕駛員執(zhí)照(CAAC)備考試題庫大全-上部分
- Unit 2 同步練習(xí)人教版2024七年級英語上冊
- JGJ94-2008建筑樁基技術(shù)規(guī)范
- 電子產(chǎn)品模具設(shè)計(jì)
- (正式版)JBT 11270-2024 立體倉庫組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范
- 失能老年人的護(hù)理與康復(fù)
- 微信小程序運(yùn)營投標(biāo)方案(技術(shù)方案)
- 布氏桿菌脊柱炎的護(hù)理
- 教育培訓(xùn)行業(yè)跨學(xué)科教育發(fā)展
評論
0/150
提交評論