2023年吉林省延邊州安圖縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末復(fù)習檢測試題含解析_第1頁
2023年吉林省延邊州安圖縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末復(fù)習檢測試題含解析_第2頁
2023年吉林省延邊州安圖縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末復(fù)習檢測試題含解析_第3頁
2023年吉林省延邊州安圖縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末復(fù)習檢測試題含解析_第4頁
2023年吉林省延邊州安圖縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末復(fù)習檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年吉林省延邊州安圖縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末復(fù)習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖是二次函數(shù)y=ax2+bx+c的圖象,對于下列說法:其中正確的有()①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當x>0時,y隨x的增大而減小,A.5個 B.4個 C.3個 D.2個2.如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結(jié)CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結(jié)DF.給出以下四個結(jié)論:①;②點F是GE的中點;③;④,其中正確的結(jié)論個數(shù)是()A.4個 B.3個 C.2個 D.1個3.某個幾何體的三視圖如圖所示,該幾何體是()A. B. C. D.4.如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為()A.28 B.24 C.20 D.165.如圖,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,若線段AB=3,則BE=()A.2 B.3 C.4 D.56.若反比例函數(shù)的圖象經(jīng)過,則這個函數(shù)的圖象一定過()A. B. C. D.7.如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的側(cè)面和底面,則的長為()A. B. C. D.8.如圖是由五個相同的小立方塊搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.9.已知,則等于()A.2 B.3 C. D.10.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A.4π B.3π C.2π+4 D.3π+4二、填空題(每小題3分,共24分)11.如圖是小明在拋擲圖釘?shù)脑囼炛械玫降膱D釘針尖朝上的折線統(tǒng)計圖,請你估計拋擲圖釘針尖朝上的概率是_____.12.在平面直角坐標系中,點(3,-4)關(guān)于原點對稱的點的坐標是____________.13.如圖,拋物線與軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________.14.已知方程x2+mx+3=0的一個根是1,則它的另一個根是______.15.關(guān)于的方程=0的兩根分別是和,且=__________.16.如圖,在矩形ABCD中,AB=4,BC=8,將矩形沿對角線BD折疊,使點C落在點E處,BE交AD于點F,則BF的長為________.17.如圖,從一塊直徑為的圓形紙片上剪出一個圓心角為的扇形,使點在圓周上.將剪下的扇形作為一個圓錐的側(cè)面,則這個圓錐的底面圓的半徑是________.18.一次測試,包括甲同學(xué)在內(nèi)的6名同學(xué)的平均分為70分,其中甲同學(xué)考了45分,則除甲以外的5名同學(xué)的平均分為_____分.三、解答題(共66分)19.(10分)如圖,點是反比例函數(shù)上一點,過點作軸于點,點為軸上一點,連接.(1)求反比例函數(shù)的解析式;(2)求的面積.20.(6分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.(1)“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;(2)從中任意抽取1個球恰好是紅球的概率是;(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.21.(6分)如圖,有一路燈桿AB(底部B不能直接到達),在燈光下,小明在點D處測得自己的影長DF=3m,沿BD方向到達點F處再測得自己得影長FG=4m,如果小明的身高為1.6m,求路燈桿AB的高度.22.(8分)若x1、x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:,.我們把它們稱為根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點間的距離為:AB=====請你參考以上定理和結(jié)論,解答下列問題:設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.(1)當△ABC為等腰直角三角形時,直接寫出b2-4ac的值;(2)當△ABC為等腰三角形,且∠ACB=120°時,直接寫出b2-4ac的值;(3)設(shè)拋物線y=x2+mx+5與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=120°.23.(8分)甲、乙兩人進行摸牌游戲現(xiàn)有三張除數(shù)字外都相同的牌,正面分別標有數(shù)字2,5,1.將三張牌背面朝上,洗勻后放在桌子上.(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;(2)若兩人抽取的數(shù)字和為4的倍數(shù),則甲獲勝;若抽取的數(shù)字和為奇數(shù),則乙獲勝這游戲公平嗎?請用概率的知識加以解釋.24.(8分)已知關(guān)于x的一元二次方程x2+2x+2k-5=0有兩個實數(shù)根.(1)求實數(shù)k的取值范圍.(2)若方程的一個實數(shù)根為4,求k的值和另一個實數(shù)根.(3)若k為正整數(shù),且該方程的根都是整數(shù),求k的值.25.(10分)如圖,是的直徑,弦于點,點在上,恰好經(jīng)過圓心,連接.(1)若,,求的直徑;(2)若,求的度數(shù).26.(10分)如圖,△ABC的高AD、BE相交于點F.求證:.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)二次函數(shù)的圖象與性質(zhì),結(jié)合圖象分別得出a,c,以及b2﹣4ac的符號進而求出答案.【詳解】①由圖象可知:a>0,c<0,∴ac<0,故①錯誤;②由于對稱軸可知:﹣<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時,y=a+b+c<0,故④正確;⑤由圖象可得,當x>﹣時,y隨著x的增大而增大,故⑤錯誤;故正確的有3個.故選:C.【點睛】此題考查二次函數(shù)的一般式y(tǒng)=ax2+bx+c的性質(zhì),熟記各字母對函數(shù)圖象的決定意義是解題的關(guān)鍵.2、C【分析】易得AG∥BC,進而可得△AFG∽△CFB,然后根據(jù)相似三角形的性質(zhì)以及BA=BC即可判斷①;根據(jù)余角的性質(zhì)可得∠ABG=∠BCD,然后利用“角邊角”可證明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根據(jù)相似三角形的性質(zhì)可得,進而可得FG=FB,然后根據(jù)FE≠BE即可判斷②;根據(jù)相似三角形的性質(zhì)可得,再根據(jù)等腰直角三角形的性質(zhì)可得AC=AB,然后整理即可判斷③;過點F作FM⊥AB于M,如圖,根據(jù)相似三角形的性質(zhì)和三角形的面積整理即可判斷④.【詳解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正確;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵點D是AB的中點,∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴點F是GE的中點不成立,故②錯誤;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正確;過點F作FM⊥AB于M,如圖,則FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④錯誤.綜上所述,正確的結(jié)論有①③共2個.故選:C.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)等知識,屬于??碱}型,熟練掌握全等三角形和相似三角形的判定和性質(zhì)是解題的關(guān)鍵.3、D【解析】根據(jù)幾何體的三視圖判斷即可.【詳解】由三視圖可知:該幾何體為圓錐.故選D.【點睛】考查了由三視圖判斷幾何體的知識,解題的關(guān)鍵是具有較強的空間想象能力,難度不大.4、B【分析】過E作EM⊥FA交FA的延長線于M,過C作CN⊥AB交AB的延長線于N,根據(jù)全等三角形的性質(zhì)得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到結(jié)論.【詳解】解:過E作EM⊥FA交FA的延長線于M,過C作CN⊥AB交AB的延長線于N,∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,∴∠EAM=∠CAB∵四邊形ACDE、四邊形ABGF是正方形,∴AC=AE,AF=AB,∴∠EAM≌△CAN,∴EM=CN,∵AF=AB,∴S△AEF=AF?EM,S△ABC=AB?CN=8,∴S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,∴圖中陰影部分的面積=3×8=24,故選:B.【點睛】本題主要考查了正方形的性質(zhì),全等三角形判定和性質(zhì),正確的作輔助線是解題的關(guān)鍵.5、B【解析】分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠BAE=60°,AB=AE,得出△BAE是等邊三角形,進而得出BE=1即可.詳解:∵將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等邊三角形,∴BE=1.故選B.點睛:本題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.要注意旋轉(zhuǎn)的三要素:①定點-旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.6、A【分析】通過已知條件求出,即函數(shù)解析式為,然后將選項逐個代入驗證即可得.【詳解】由題意將代入函數(shù)解析式得,解得,故函數(shù)解析式為,將每個選項代入函數(shù)解析式可得,只有選項A的符合,故答案為A.【點睛】本題考查了已知函數(shù)圖象經(jīng)過某點,利用代入法求系數(shù),再根據(jù)函數(shù)解析式分析是否經(jīng)過所給的點.7、B【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長等于圓錐底面圓的周長列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【點睛】本題考查了圓錐的計算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.8、A【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上面看易得上面一層有3個正方形,下面左邊有一個正方形.故選A.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.9、D【詳解】∵2x=3y,∴.故選D.10、D【解析】試題解析:觀察該幾何體的三視圖發(fā)現(xiàn)其為半個圓柱,半圓柱的直徑為2,表面積有四個面組成:兩個半圓,一個側(cè)面,還有一個正方形.故其表面積為:故選D.二、填空題(每小題3分,共24分)11、0.1【分析】利用頻數(shù)統(tǒng)計圖可得,在試驗中圖釘針尖朝上的頻率在0.1波動,然后利用頻率估計概率可得圖釘針尖朝上的概率.【詳解】解:由統(tǒng)計圖得,在試驗中得到圖釘針尖朝上的頻率在0.1波動,所以可根據(jù)計圖釘針尖朝上的概率為0.1.【點睛】本題考查了頻數(shù)統(tǒng)計圖用頻率估計概率,解決本題的關(guān)鍵是正確理解題意,明確頻率和概率之間的聯(lián)系和區(qū)別.12、(-3,4)【詳解】在平面直角坐標系中,點(3,-4)關(guān)于原點對稱的點的坐標是(-3,4).故答案為(-3,4).【點睛】本題考查關(guān)于原點對稱的點的坐標,兩個點關(guān)于原點對稱時,它們的坐標符號相反.13、3.1【分析】連接BP,如圖,先解方程=0得A(?4,0),B(4,0),再判斷OQ為△ABP的中位線得到OQ=BP,利用點與圓的位置關(guān)系,BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,然后計算出BP′即可得到線段OQ的最大值.【詳解】連接BP,如圖,當y=0時,=0,解得x1=4,x2=?4,則A(?4,0),B(4,0),∵Q是線段PA的中點,∴OQ為△ABP的中位線,∴OQ=BP,當BP最大時,OQ最大,而BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,∵BC=∴BP′=1+2=7,∴線段OQ的最大值是3.1,故答案為:3.1.【點睛】本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.也考查了三角形中位線.14、1【解析】試題分析:設(shè)方程的另一個解是a,則1×a=1,解得:a=1.故答案是:1.考點:根與系數(shù)的關(guān)系.15、2【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可解答.【詳解】∵方程=0的兩根分別是和,∴,,∴=,故答案為:2.【點睛】此題考查根與系數(shù)的關(guān)系,熟記兩個關(guān)系式并運用解題是關(guān)鍵.16、5【解析】由翻折的性質(zhì)可以知道,由矩形的性質(zhì)可以知道:,從而得到,于是,故此BF=DF,在中利用勾股定理可求得BF的長.【詳解】由折疊的性質(zhì)知,CD=ED,BE=BC.

四邊形ABCD是矩形,

在和中,

,

,

;

設(shè)BF=x,則DF=x,AF=8-x,

在中,可得:,即,

計算得出:x=5,

故BF的長為5.

因此,本題正確答案是:5【點睛】本題考查了折疊的性質(zhì)折疊前后兩圖形全等,即對應(yīng)線段相等,對應(yīng)角相等,也考查了勾股定理,矩形的性質(zhì).17、【分析】連接BC,根據(jù)圓周角定理求出BC是⊙O的直徑,BC=12cm,根據(jù)勾股定理求出AB,再根據(jù)弧長公式求出半徑r.【詳解】連接BC,由題意知∠BAC=90°,∴BC是⊙O的直徑,BC=12cm,∵AB=AC,∴,∴(cm),設(shè)這個圓錐的底面圓的半徑是rcm,∵,∴,∴r=(cm),故答案為:.【點睛】此題考查圓周角定理,弧長公式,勾股定理,連接BC得到BC是圓的直徑是解題的關(guān)鍵.18、1.【分析】求出6名學(xué)生的總分后,再求出除甲同學(xué)之外的5人的總分,進而求出平均分即可.【詳解】(70×6﹣45)÷(6﹣1)=1分,故答案為:1.【點睛】此題考查平均數(shù)的計算,掌握公式即可正確解答.三、解答題(共66分)19、(1);(2)的面積為1.【分析】(1)把點代入反比例函數(shù)即可求出比例函數(shù)的解析式;(2)利用A,B點坐標進而得出AC,BC的長,然后根據(jù)三角形的面積公式求解即可.【詳解】(1)點是反比例函數(shù)上一點,,故反比例函數(shù)的解析式為:;(2)點,點軸,,故的面積為:.【點睛】此題主要考查了待定系數(shù)法求反比例函數(shù)解析式,坐標與圖形的性質(zhì),三角形的面積公式,熟練掌握待定系數(shù)法是解題關(guān)鍵.20、(1)必然,不可能;(2);(3)此游戲不公平.【解析】(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關(guān)鍵.21、6.4m【分析】由CD∥EF∥AB得可以得到△CDF∽△ABF,△ABG∽△EFG,故,,證,進一步得,求出BD,再得;【詳解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,F(xiàn)G=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴∴BD=9,BF=9+3=12∴解得,AB=6.4m因此,路燈桿AB的高度6.4m.【點睛】考核知識點:相似三角形的判定和性質(zhì).理解相似三角形判定是關(guān)鍵.22、(1)4;(2);(3)拋物線向上平移個單位后,向左或向右平移任意個單位都能使得度數(shù)由90°變?yōu)?20°.【分析】(1)根據(jù)上述結(jié)論及直角三角形的性質(zhì)列出等式,計算出即可;(2)根據(jù)上述結(jié)論及含120°的等腰三角形的邊角關(guān)系,列出方程,解出方程即可;(3)根據(jù)(1)中結(jié)論,計算出m的值,設(shè)出平移后的函數(shù)解析式,根據(jù)(2)中結(jié)論,列出等量關(guān)系即可解出.【詳解】解:(1)由y=ax2+bx+c(a≠0)可知頂點C∵,∴當△ABC為等腰直角三角形時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可知:=,化簡得故答案為:4(2)由y=ax2+bx+c(a≠0)可知頂點C如圖,過點C作CD⊥AB交AB于點D,∵∠ACB=120°,∴∠A=30°∵tan30°=,即,又因為,∴化簡得故答案為:(3)∵因為向左或向右平移時的度數(shù)不變,所以只需將拋物線向上或向下平移使,然后向左或向右平移任意個單位即可.設(shè)向上或向下平移后的拋物線的解析式為:,平移后,所以,拋物線向上平移個單位后,向左或向右平移任意個單位都能使得度數(shù)由變?yōu)?【點睛】本題考查二次函數(shù)與幾何的綜合應(yīng)用題,難度適中,關(guān)鍵是能夠根據(jù)特殊三角形的性質(zhì)列出關(guān)系式.23、(1)兩人抽取相同數(shù)字的概率是;(2)這個游戲公平.【分析】(1)根據(jù)題意畫出樹狀圖得出所有等情況數(shù)和兩人抽取相同數(shù)字的情況數(shù),然后根據(jù)概率公式即可得出答案;(2)根據(jù)概率公式求出兩人抽取的數(shù)字和為4的倍數(shù)以及和為奇數(shù)的概率,然后進行比較即可得出答案.【詳解】(1)根據(jù)題意畫樹狀圖如下:共有9種等情況數(shù),其中兩人抽取相同數(shù)字的有3種,則兩人抽取相同數(shù)字的概率是;(2)∵共有9種等情況數(shù),其中兩人抽取的數(shù)字和為4的倍數(shù)有4種,抽取的數(shù)字和為奇數(shù)的有4種,∴P(和為4的倍數(shù))=,P(和為奇數(shù))=,∴這個游戲公平.【點睛】本題主要考查的是利用概率計算判斷游戲公平性,解決本題的關(guān)鍵是要熟練掌握樹狀圖求概率的方法.24、(1)k≤1;(2)k的值為-,另一個根為-2;(1)k的值為1或1.【分析】(1)根據(jù)一元二次方程根的判別式列不等式即可得答案;(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系即可得答案;(1)由(1)可得k≤1,根據(jù)k為正整數(shù)可得k=1,k=2或k=1,分別代入方程,求出方程的根,根據(jù)該方程的根都是整數(shù)即可得答案.【詳解】(1)∵關(guān)于x的一元二次方程x2+2x+2k﹣5=0有兩個實數(shù)根,∴△=22﹣4×1×(2k﹣5)=﹣8k+24≥0,解得:k≤1,∴k的取值范圍是k≤1.(2)設(shè)方程的另一個根為m,∴4+m=-2,解得:m=-2,∴2k﹣5=4×(-2)∴k=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論