2024屆安徽省阜陽市阜南縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆安徽省阜陽市阜南縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆安徽省阜陽市阜南縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆安徽省阜陽市阜南縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆安徽省阜陽市阜南縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆安徽省阜陽市阜南縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.反比例函數(shù)的圖象經(jīng)過點,則下列各點中,在這個函數(shù)圖象上的是()A. B. C. D.2.已知關(guān)于x的方程x2-kx-6=0的一個根為x=-3,則實數(shù)k的值為()A.1 B.-1 C.2 D.-23.拋物線y=x2先向右平移1個單位,再向上平移3個單位,得到新的拋物線解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+34.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.5.中,,若,,則的長為()A. B. C. D.56.將一副學(xué)生常用的三角板如下圖擺放在一起,組成一個四邊形,連接,則的值為()A. B. C. D.7.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=38.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是().A. B. C. D.9.如圖,為的直徑,弦于點,若,,則的半徑為()A.3 B.4 C.5 D.610.如圖,在中,,,.點P是邊AC上一動點,過點P作交BC于點Q,D為線段PQ的中點,當(dāng)BD平分時,AP的長度為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖示,在中,,,,點在內(nèi)部,且,連接,則的最小值等于______.12.若一個正多邊形的每一個外角都等于36°,那么這個正多邊形的中心角為__________度.13.75°的圓心角所對的弧長是2.5cm,則此弧所在圓的半徑是_____cm.14.計算:=_____________15.如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運(yùn)動的路徑長為18,則△ABC的周長為_____.16.從0,1,2,3,4中任取兩個不同的數(shù),其乘積為0的概率是___________.17.從某玉米種子中抽取6批,在同一條件下進(jìn)行發(fā)芽試驗,有關(guān)數(shù)據(jù)如下:種子粒數(shù)100400800100020005000發(fā)芽種子粒數(shù)8529865279316044005發(fā)芽頻率0.8500.7450.8150.7930.8020.801根據(jù)以上數(shù)據(jù)可以估計,該玉米種子發(fā)芽的概率約為___(精確到0.1).18.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____.三、解答題(共66分)19.(10分)解分式方程:(1).(2).20.(6分)在Rt△ABC中,∠ACB=90°,AC=1,記∠ABC=α,點D為射線BC上的動點,連接AD,將射線DA繞點D順時針旋轉(zhuǎn)α角后得到射線DE,過點A作AD的垂線,與射線DE交于點P,點B關(guān)于點D的對稱點為Q,連接PQ.(1)當(dāng)△ABD為等邊三角形時,①依題意補(bǔ)全圖1;②PQ的長為;(2)如圖2,當(dāng)α=45°,且BD=時,求證:PD=PQ;(3)設(shè)BC=t,當(dāng)PD=PQ時,直接寫出BD的長.(用含t的代數(shù)式表示)21.(6分)閱讀材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x2,x2則x2+x2=﹣,x2x2=.材料2已知實數(shù)m,n滿足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由題知m,n是方程x2﹣x﹣2=0的兩個不相等的實數(shù)根,根據(jù)材料2得m+n=2,mn=﹣2,所以=﹣2.根據(jù)上述材料解決以下問題:(2)材料理解:一元二次方程5x2+20x﹣2=0的兩個根為x2,x2,則x2+x2=,x2x2=.(2)類比探究:已知實數(shù)m,n滿足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思維拓展:已知實數(shù)s、t分別滿足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.22.(8分)某中學(xué)準(zhǔn)備舉辦一次演講比賽,每班限定兩人報名,初三(1)班的三位同學(xué)(兩位女生,一位男生)都想報名參加,班主任李老師設(shè)計了一個摸球游戲,利用已學(xué)過的概率知識來決定誰去參加比賽,游戲規(guī)則如下:在一個不透明的箱子里放3個大小質(zhì)地完全相同的乒乓球,在這3個乒乓球上分別寫上、、(每個字母分別代表一位同學(xué),其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機(jī)摸出一個乒乓球,不放回,再次攪勻后隨機(jī)摸出第二個乒乓球,根據(jù)乒乓球上的字母決定誰去參加比賽。(1)求李老師第一次摸出的乒乓球代表男生的概率;(2)請用列表或畫樹狀圖的方法求恰好選定一名男生和一名女生參賽的概率.23.(8分)如圖,中,,,平分,交軸于點,點是軸上一點,經(jīng)過點、,與軸交于點,過點作,垂足為,的延長線交軸于點,(1)求證:為的切線;(2)求的半徑.24.(8分)感知:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,過點D作DE⊥CB交CB的延長線于點E,連接CD.(1)求證:△ACB≌△BED;(2)△BCD的面積為(用含m的式子表示).拓展:如圖②,在一般的Rt△ABC,∠ACB=90°,BC=m,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,用含m的式子表示△BCD的面積,并說明理由.應(yīng)用:如圖③,在等腰△ABC中,AB=AC,BC=8,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,則△BCD的面積為;若BC=m,則△BCD的面積為(用含m的式子表示).25.(10分)已知:關(guān)于x的方程,(1)求證:無論k取任何實數(shù)值,方程總有實數(shù)根;(2)若等腰三角形ABC的一邊長a=1,兩個邊長b,c恰好是這個方程的兩個根,求△ABC的周長.26.(10分)如圖,在矩形ABCD中,已知AD>AB.在邊AD上取點E,連結(jié)CE.過點E作EF⊥CE,與邊AB的延長線交于點F.(1)求證:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求線段BF的長.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】計算k值相等即可判斷該點在此函數(shù)圖象上.【詳解】k=-23=-6,A.23=6,該點不在反比例函數(shù)的圖象上;B.-2(-3)=6,該點不在反比例函數(shù)的圖象上;C.16=6,該點不在反比例函數(shù)的圖象上,D.1(-6)=-6,該點在反比例函數(shù)的圖象上,故選:D.【點睛】此題考查反比例函數(shù)的性質(zhì),正確計算k值即可判斷.2、B【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.【詳解】解:因為x=-3是原方程的根,所以將x=-3代入原方程,即(-3)2+3k?6=0成立,解得k=-1.故選:B.【點睛】本題考查的是一元二次方程的根即方程的解的定義,解題的關(guān)鍵是把方程的解代入進(jìn)行求解.3、D【分析】按“左加右減,上加下減”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】拋物線y=x2先向右平移1個單位得y=(x﹣1)2,再向上平移3個單位得y=(x﹣1)2+3.故選D.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(biāo)(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負(fù)左移;k值正上移,負(fù)下移”.4、B【分析】根據(jù)網(wǎng)格的特點求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應(yīng)成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.5、B【分析】根據(jù)題意,可得=,又由AB=4,代入即可得AC的值.【詳解】解:∵中,,,∴=.∴AC=AB==.故選B.【點睛】本題考查解直角三角形、勾股定理,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和勾股定理解答.6、B【分析】設(shè)AC、BD交于點E,過點C作CF⊥BD于點F,過點E作EG⊥CD于點G,則CF∥AB,△CDF和△DEG都是等腰直角三角形,設(shè)AB=2,則易求出CF=,由△CEF∽△AEB,可得,于是設(shè)EF=,則,然后利用等腰直角三角形的性質(zhì)可依次用x的代數(shù)式表示出CF、CD、DE、DG、EG的長,進(jìn)而可得CG的長,然后利用正切的定義計算即得答案.【詳解】解:設(shè)AC、BD交于點E,過點C作CF⊥BD于點F,過點E作EG⊥CD于點G,則CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,設(shè)AB=2,∵∠ADB=30°,∴BD=,∵∠BDC=∠CBD=45°,CF⊥BD,∴CF=DF=BF==,∴,設(shè)EF=,則,∴,∴,,∴,∴,∴.故選:B.【點睛】本題以學(xué)生常見的三角板為載體,考查了銳角三角函數(shù)和特殊角的三角函數(shù)值、30°角的直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,構(gòu)圖簡潔,但有相當(dāng)?shù)碾y度,正確添加輔助線、熟練掌握等腰直角三角形的性質(zhì)和銳角三角函數(shù)的知識是解題的關(guān)鍵.7、D【分析】利用因式分解法求解可得.【詳解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,則x﹣5=0或2x﹣6=0,解得x=5或x=3,故選:D.【點睛】本題考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.8、C【分析】逐一分析四個選項,根據(jù)二次函數(shù)圖象的開口方向以及對稱軸與y軸的位置關(guān)系,即可得出a、b的正負(fù)性,由此即可得出一次函數(shù)圖象經(jīng)過的象限,即可得出結(jié)論.【詳解】A.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),∴a<0,b<0,∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項錯誤;B.∵二次函數(shù)圖象開口向上,對稱軸在y軸右側(cè),∴a>0,b<0,∴一次函數(shù)圖象應(yīng)該過第一、三、四象限,故本選項錯誤;C.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),∴a<0,b<0,∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項正確;D.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),∴a<0,b<0,∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項錯誤.故選C.【點睛】本題主要考查二次函數(shù)圖象與一次函數(shù)圖象的綜合,掌握二次函數(shù)與一次函數(shù)系數(shù)與圖象的關(guān)系,是解題的關(guān)鍵.9、C【分析】根據(jù)題意,連接OC,通過垂徑定理及勾股定理求半徑即可.【詳解】如下圖,連接OC,∵,,∴CE=4,∵,,∴,故選:C.【點睛】本題主要考查了圓半徑的求法,熟練掌握垂徑定理及勾股定理是解決本題的關(guān)鍵.10、B【分析】根據(jù)勾股定理求出AC,根據(jù)角平分線的定義、平行線的性質(zhì)得到,得到,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【詳解】解:,,,,,,又,,,,,,,即,解得,,,故選B.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根據(jù),得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當(dāng)點C、O、P在同一直線上時,CP最小,構(gòu)建圓,利用勾股定理,即可得解.【詳解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當(dāng)點C、O、P在同一直線上時,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案為.【點睛】此題主要考查直角三角形中的動點綜合問題,解題關(guān)鍵是找到點P的位置.12、1【分析】根據(jù)題意首先由多邊形外角和定理求出正多邊形的邊數(shù)n,再由正多邊形的中心角=,即可得出答案.【詳解】解:∵正多邊形的每一個外角都等于1°,∴正多邊形的邊數(shù)為:,∴這個正多邊形的中心角為:.故答案為:1.【點睛】本題考查正多邊形的性質(zhì)和多邊形外角和定理以及正多邊形的中心角的計算方法,熟練掌握正多邊形的性質(zhì)并根據(jù)題意求出正多邊形的邊數(shù)是解決問題的關(guān)鍵.13、1【分析】由弧長公式:計算.【詳解】解:由題意得:圓的半徑.故本題答案為:1.【點睛】本題考查了弧長公式.14、-1【分析】根據(jù)二次根式的性質(zhì)和負(fù)整數(shù)指數(shù)冪的運(yùn)算法則進(jìn)行計算即可.【詳解】故答案為:-1.【點睛】此題主要考查了二次根式的性質(zhì)以及負(fù)整數(shù)指數(shù)冪的運(yùn)算法則,熟練掌握其性質(zhì)和運(yùn)算法則是解此題的關(guān)鍵.15、4【分析】如圖,首先利用勾股定理判定△ABC是直角三角形,由題意得圓心O所能達(dá)到的區(qū)域是△DEG,且與△ABC三邊相切,設(shè)切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據(jù)切線性質(zhì)可得:AG=AH,PC=CQ,BN=BM,DG、EP分別垂直于AC,EQ、FN分別垂直于BC,F(xiàn)M、DH分別垂直于AB,繼而則有矩形DEPG、矩形EQNF、矩形DFMH,從而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根據(jù)題意可知四邊形CPEQ是邊長為1的正方形,根據(jù)相似三角形的判定可得△DEF∽△ACB,根據(jù)相似三角形的性質(zhì)可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,進(jìn)而根據(jù)圓心O運(yùn)動的路徑長列出方程,求解算出DE、EF、FD的長,根據(jù)矩形的性質(zhì)可得:GP、QN、MH的長,根據(jù)切線長定理可設(shè):AG=AH=x,BN=BM=y(tǒng),根據(jù)線段的和差表示出AC、BC、AB的長,進(jìn)而根據(jù)AC∶CB∶BA=3∶4∶1列出比例式,繼而求出x、y的值,進(jìn)而即可求解△ABC的周長.【詳解】∵AC∶CB∶BA=3∶4∶1,設(shè)AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,設(shè)⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,如圖所示,連接DE、EF、DF,設(shè)切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據(jù)切線性質(zhì)可得:AG=AH,PC=CQ,BN=BMDG、EP分別垂直于AC,EQ、FN分別垂直于BC,F(xiàn)M、DH分別垂直于AB,∴DG∥EP,EQ∥FN,F(xiàn)M∥DH,∵⊙O的半徑為1∴DG=DH=PE=QE=FN=FM=1,則有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四邊形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半徑為1,且圓心O運(yùn)動的路徑長為18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,設(shè)DE=3k(k>0),則EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根據(jù)切線長定理,設(shè)AG=AH=x,BN=BM=y(tǒng),則AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y(tǒng)+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周長為4.故答案為4.【點睛】本題是一道動圖形問題,考查切線的性質(zhì)定理、相似三角形的判定與性質(zhì)、矩形的判定與性質(zhì)、解直角三角形等知識點,解題的關(guān)鍵是確定圓心O的軌跡,學(xué)會作輔助線構(gòu)造相似三角形,綜合運(yùn)用上述知識點.16、【分析】首先根據(jù)題意畫出表格,然后由表格求得所有等可能的結(jié)果與其乘積等于0的情況,再利用概率公式即可求得答案;【詳解】解:畫表格得:共由20種等可能性結(jié)果,其中乘積為0有8種,故乘積為0的概率為,故答案為:.【點睛】本題主要考查了列表法與樹狀圖法,掌握列表法與樹狀圖法是解題的關(guān)鍵.17、0.1【分析】6批次種子粒數(shù)從100粒增加到5000粒時,種子發(fā)芽的頻率趨近于0.101,所以估計種子發(fā)芽的概率為0.101,再精確到0.1,即可得出答案.【詳解】根據(jù)題干知:當(dāng)種子粒數(shù)5000粒時,種子發(fā)芽的頻率趨近于0.101,故可以估計種子發(fā)芽的概率為0.101,精確到0.1,即為0.1,故本題答案為:0.1.【點睛】本題比較容易,考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.18、【分析】連接OB和AC交于點D,根據(jù)菱形及直角三角形的性質(zhì)先求出AC的長及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【詳解】連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=則圖中陰影部分面積為S扇形AOC﹣S菱形ABCO=故答案為【點睛】本題考查扇形面積的計算及菱形的性質(zhì),解題關(guān)鍵是熟練掌握菱形的面積和扇形的面積,有一定的難度.三、解答題(共66分)19、(1);(2)無解【分析】(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】(1)兩邊同時乘以去分母得:,去括號得:,移項合并得:,解得:,檢驗:時,,是原方程的解;(2)兩邊同時乘以去分母得:,去括號得:,移項合并得:,檢驗:時,,是原方程的增根,故原方程無解.【點睛】本題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.20、(1)①詳見解析;②1;(1)詳見解析;(3)BD=.【分析】(1)①根據(jù)題意畫出圖形即可.②解直角三角形求出PA,再利用全等三角形的性質(zhì)證明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通過計算證明DF=FQ即可解決問題.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設(shè)BD=x,則CD=x﹣t,,利用相似三角形的性質(zhì)構(gòu)建方程求解即可解決問題.【詳解】(1)解:①補(bǔ)全圖形如圖所示:②∵△ABD是等邊三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD?tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如圖:∵PA⊥AD,∴∠PAD=90°由題意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四邊形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵∠ACD=∠AHP=90°∴△ACD≌△AHP(AAS)∴AH=AC=1∴CF=AH=1∵,BC=1,B,Q關(guān)于點D對稱∴,∴∴F為DQ中點∴PF垂直平分DQ∴PQ=PD.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設(shè)BD=x,則CD=x﹣t,∵PD=PQ,PF⊥DQ∴∵四邊形AHFC是矩形∴∵△ACB∽△PAD∴∴∴∵△PAH∽△DAC∴∴解得∴.故答案是:(1)①詳見解析;②1;(1)詳見解析;(3).【點睛】本題是三角形綜合題目,主要考查了三角形的旋轉(zhuǎn)、等邊三角形的性質(zhì)、銳角三角函數(shù)、勾股定理、全等三角形的判定和性質(zhì)、矩形的判定和性質(zhì),構(gòu)造全等三角形、相似三角形、直角三角形是解題的關(guān)鍵.21、(2)-2,-;(2)﹣;(2)﹣.【分析】(2)直接利用根與系數(shù)的關(guān)系求解;(2)把m、n可看作方程7x2﹣7x﹣2=0,利用根與系數(shù)的關(guān)系得到m+n=2,mn=﹣,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整體的方法計算;(2)先把t2+99t+29=0變形為29?()2+99?+2=0,則把實數(shù)s和可看作方程29x2+99x+2=0的兩根,利用根與系數(shù)的關(guān)系得到s+=﹣,s?=,然后變形為s+4?+,再利用整體代入的方法計算.【詳解】解:(2)x2+x2=﹣=﹣2,x2x2=﹣;故答案為﹣2;﹣;(2)∵7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,∴m、n可看作方程7x2﹣7x﹣2=0,∴m+n=2,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×2=﹣;(2)把t2+99t+29=0變形為29?()2+99?+2=0,實數(shù)s和可看作方程29x2+99x+2=0的兩根,∴s+=﹣,s?=,∴=s+4?+=﹣+4×=﹣.【點睛】本題考查了根與系數(shù)的關(guān)系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x2+x2=﹣,x2x2=.也考查了解一元二次方程.22、(1)李老師第一次摸出的乒乓球代表男生的概率為;(2)恰好選定一名男生和t名女生參賽的概率為.【分析】(1)共3個球,第一次摸出的乒乓球代表男生的有1種,即可利用概率公式求得結(jié)果;(2)列樹狀圖即可解答.【詳解】(1)共有3個球,第一次摸出的乒乓球代表男生的有1種情況,∴第一次摸出的乒乓球代表男生的概率為;(2)樹狀圖如下:共有6種等可能的情況,其中恰好選定一名男生和一名女生參賽的有4種,∴P(恰好選定一名男生和一名女生參賽)=.【點睛】此題考查事件概率的求法,簡單事件的概率可直接利用公式計算,復(fù)雜事件的概率可利用列樹狀圖解答,解題中注意事件是屬于“放回”或是“不放回”事件.23、(1)證明見解析;(2)1.【分析】(1)連接CP,根據(jù)等腰三角形的性質(zhì)得到∠PAC=∠PCA,由角平分線的定義得到∠PAC=∠EAC,等量代換得到∠PCA=∠EAC,推出PC∥AE,于是得到結(jié)論;(2)連接PC,根據(jù)角平分線的定義得到∠BAC=∠OAC,根據(jù)等腰三角形的性質(zhì)得到∠PCA=∠PAC,等量代換得到∠BAC=∠ACP,推出PC∥AB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:連接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切線.(2)連接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半徑為1【點睛】本題考查了角平分線的定義,平行線的判定和性質(zhì),切線的判定,相似三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.24、感知:(1)詳見解析;(1)m1;拓展:m1,理由詳見解析;應(yīng)用:16,m1.【解析】感知:(1)由題意可得CA=CB,∠A=∠ABC=25°,由旋轉(zhuǎn)的性質(zhì)可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可證△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根據(jù)三角形面積求法可求△BCD的面積;拓展:作DG⊥CB交CB的延長線于G,可證△ACB≌△BGD,可得BC=DG=m,根據(jù)三角形面積求法可求△BCD的面積;應(yīng)用:過點A作AN⊥BC于N,過點D作DM⊥BC的延長線于點M,由等腰三角形的性質(zhì)可以得出BN=BC,由條件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面積公式就可以得出結(jié)論.【詳解】感知:證明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋轉(zhuǎn)的性質(zhì)可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案為m1,拓展:作DG⊥CB交CB的延長線于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論