




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省孝感高中2023-2024學(xué)年數(shù)學(xué)高三上期末達(dá)標(biāo)檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.設(shè)全集U=R,集合,則()A. B. C. D.3.函數(shù)()的圖像可以是()A. B.C. D.4.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說(shuō)法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值5.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.116.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長(zhǎng)為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.7.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.369.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.10.函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位11.()A. B. C. D.12.命題:的否定為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在上的最小值和最大值分別是_____________.14.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為_(kāi)_____.15.某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過(guò)程必須先后經(jīng)過(guò)兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,再次燒制過(guò)程相互獨(dú)立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過(guò)第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過(guò)第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為_(kāi)_______;經(jīng)過(guò)前后兩次燒制后,合格工藝品的件數(shù)為,則隨機(jī)變量的期望為_(kāi)_______.16.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為_(kāi)_______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).18.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87919.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AEBD于E,延長(zhǎng)AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫(xiě)出結(jié)果,不要求過(guò)程).20.(12分)己知的內(nèi)角的對(duì)邊分別為.設(shè)(1)求的值;(2)若,且,求的值.21.(12分)某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計(jì)男生6女生18合計(jì)60已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來(lái)分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.024
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)題意畫(huà)出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫(huà)出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.2、A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.【點(diǎn)睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.3、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點(diǎn)睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.4、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【詳解】對(duì)于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對(duì)于,平面平面,和平面相交,與是異面直線,正確.對(duì)于,由知,平面平面,與不可能平行,錯(cuò)誤.對(duì)于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.5、A【解析】
根據(jù)約束條件畫(huà)出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫(huà)出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^(guò)點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡(jiǎn)單題.6、D【解析】
如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過(guò)作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.7、D【解析】
根據(jù)復(fù)數(shù)的運(yùn)算,化簡(jiǎn)得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運(yùn)算,可得,所對(duì)應(yīng)的點(diǎn)為位于第四象限.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,準(zhǔn)確化簡(jiǎn)復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡(jiǎn)可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.9、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.10、A【解析】依題意有的周期為.而,故應(yīng)左移.11、D【解析】
利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.12、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題14、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、0.380.9【解析】
考慮恰有一件的三種情況直接計(jì)算得到概率,隨機(jī)變量的可能取值為,計(jì)算得到概率,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,,.故隨機(jī)變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、1【解析】
作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值?!驹斀狻坑桑?,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),截距最小,此時(shí)取得最大值。由,解得,代入直線,得?!军c(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問(wèn)題的解法——平移法。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案見(jiàn)解析(3)答案見(jiàn)解析【解析】
(1)設(shè)曲線在點(diǎn),處的切線的斜率為,可求得,,利用直線的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時(shí),,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線在點(diǎn),處的切線的斜率為,則,又,曲線在點(diǎn),處的切線方程為:,即;(2)由(1)知,,故當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時(shí),單調(diào)遞增為,無(wú)遞減區(qū)間;當(dāng)時(shí),的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時(shí),恒成立,所以無(wú)零點(diǎn);當(dāng)時(shí),由,得:,只有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運(yùn)算能力,屬于中檔題.18、(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見(jiàn)解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對(duì)比判斷即可【詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)的女生人數(shù)為37人,聯(lián)表如下:男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)71825每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)383775總計(jì)4555100因?yàn)?.892>3.841,所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【點(diǎn)睛】本題考查分層抽樣,獨(dú)立性檢驗(yàn),熟記公式,正確計(jì)算是關(guān)鍵,屬于中檔題.19、(Ⅰ)證明見(jiàn)解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫(xiě)出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線為x軸,y軸,z軸,
建立空間直角坐標(biāo)系E-xyz,設(shè)AB=BD=DC=AD=2,
則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個(gè)法向量為,設(shè)平面ADC的一個(gè)法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.
(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點(diǎn)睛】本題考查線面垂直的證明、幾何體體積計(jì)算、二面角有關(guān)的立體幾何綜合題,屬于中等題.20、(1)(2)【解析】
(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因?yàn)?,則,因?yàn)?,故,故,解得,故,則.【點(diǎn)睛】本題考查正弦定理、余
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度教師教育培訓(xùn)機(jī)構(gòu)戰(zhàn)略合作合同
- 2025福建省安全員《C證》考試題庫(kù)
- 2025年度企業(yè)產(chǎn)品質(zhì)量認(rèn)證服務(wù)合同范本
- 2025年度歷史輔導(dǎo)班協(xié)議書(shū)退費(fèi)及人文知識(shí)拓展合同
- 2025年度教育機(jī)構(gòu)員工入職教學(xué)與培訓(xùn)合同
- 2025年度勞動(dòng)解除協(xié)議書(shū):物流行業(yè)員工退工補(bǔ)償與就業(yè)安置合同
- 智能家居融資居間合同范例
- 2025年度養(yǎng)豬業(yè)品牌營(yíng)銷推廣合作協(xié)議
- 2025年度體育賽事賽事獎(jiǎng)勵(lì)及獎(jiǎng)金分配轉(zhuǎn)委托合同
- 2025年度5G通信技術(shù)合作介紹費(fèi)合同
- 化工原理傳質(zhì)導(dǎo)論
- 環(huán)境與可持續(xù)發(fā)展ppt課件(完整版)
- Linux操作系統(tǒng)課件(完整版)
- 跨境電商亞馬遜運(yùn)營(yíng)實(shí)務(wù)完整版ppt課件-整套課件-最全教學(xué)教程
- 浙美版小學(xué)六年級(jí)美術(shù)下冊(cè)全冊(cè)精品必備教學(xué)課件
- DB32∕T 4245-2022 城鎮(zhèn)供水廠生物活性炭失效判別和更換標(biāo)準(zhǔn)
- 建設(shè)工程圍擋標(biāo)準(zhǔn)化管理圖集(2022年版)
- 人教版七年級(jí)上冊(cè)歷史課程綱要
- 濕法冶金簡(jiǎn)介
- 2022新教科版六年級(jí)科學(xué)下冊(cè)全一冊(cè)全部教案(共28節(jié))
- 機(jī)器視覺(jué)論文英文
評(píng)論
0/150
提交評(píng)論