《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3篇_第1頁
《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3篇_第2頁
《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3篇_第3頁
《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3篇_第4頁
《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3篇_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3篇《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)1

教學(xué)目標(biāo):

1、掌握三角形內(nèi)角和是180°,并能應(yīng)用這一規(guī)律解決一些實(shí)際問題。

2、讓學(xué)生經(jīng)歷“猜想、動(dòng)手操作、直觀感知、探索、歸納、應(yīng)用”等知識(shí)形成的過程,掌握“轉(zhuǎn)化”的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生動(dòng)手實(shí)踐能力,發(fā)展學(xué)生的空間思維能力。

3、在活動(dòng)中,讓學(xué)生體驗(yàn)主動(dòng)探究數(shù)學(xué)規(guī)律的樂趣,體驗(yàn)數(shù)學(xué)的價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,同時(shí)使學(xué)生養(yǎng)成獨(dú)立思考的好習(xí)慣。

教學(xué)重點(diǎn):

讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程。

教學(xué)難點(diǎn):

三角形內(nèi)角和的探索與驗(yàn)證。

教學(xué)準(zhǔn)備:

量角器各種類型的三角形(硬的紙板)三角板

教學(xué)過程:

一、設(shè)疑激趣,導(dǎo)入新課

師:今天老師給大家?guī)砹艘晃慌笥?課件)出示三角形,

師:對(duì)于三角形你有哪些認(rèn)識(shí)與了解。

生:三角形有銳角三角形、直角三角形、鈍角三角形

生:由三條線段圍成的平面圖形叫三角形。

師:介紹內(nèi)角、內(nèi)角和

三角形中每兩條邊組成的角叫做三角形的內(nèi)角。

師:三角形有幾個(gè)內(nèi)角。

生:三個(gè)。

師:這三個(gè)角的和,就叫做三角形的內(nèi)角和。你知道三角形內(nèi)角和是多少度?

生1:我通過直角三角板知道的

生2:我通過長方形中四個(gè)角都是直角,是360度,三角形是長方形的一半,所以是180度

生3:我預(yù)習(xí)了,三角形內(nèi)角和就是180度)

師:是不是向他們說的一樣,所有的三角形內(nèi)角和都是180度呢?

二、自主探索,進(jìn)行驗(yàn)證

師:你打算怎樣驗(yàn)證呢?

生1用量角器量出每個(gè)角的度數(shù),再加一加看看是不是180度生2:把三角形撕下來

師:怎么撕?象這樣撕嗎?(作亂撕狀),能說的詳細(xì)些具體些嗎?生2:(補(bǔ)充),把三個(gè)角撕下來,拼在一起,看能不能拼成一個(gè)平角

生3:把三個(gè)角順次畫下來也可以

生4:拼一拼的方法

師:好!同學(xué)們想出了這么多辦法,下面就用你喜歡的方法驗(yàn)證師:CAI多媒體課件展示操作要求:

合作探究:

1、每四人一組,每組至少選兩個(gè)三角形,用你喜歡的方法驗(yàn)證

2、看那個(gè)小組驗(yàn)證的方法新、方法多

師:在巡視,并進(jìn)行個(gè)別操作指導(dǎo)

三、交流探索的方法和結(jié)果

孩子們探索的方法可能有三個(gè):

生1:一是用量角器量各個(gè)角,然后再算出三角形中三個(gè)角的度數(shù)和,用這種方法求的結(jié)果可能是180度也可能比180度小一些,也可能比180度大一些。

生2:二是用轉(zhuǎn)化法,把三角形中三個(gè)角剪下來,拼在一起成為一個(gè)平角,由此得出三角形中三個(gè)角的和是180度。

生3:三是折一折,把三個(gè)角折在一起,折在一起成為一個(gè)平角,由此得出三角形中三個(gè)角的和是180度。

四、歸納總結(jié),體驗(yàn)成功

師:孩子們,三角形中三個(gè)角的度數(shù)和到底是多少度呢?

生:180度。

五、拓展應(yīng)用

1、基礎(chǔ)練習(xí)

2、等邊三角形、等腰三角形、直角三角形

六、課堂小結(jié)

談一談自己的學(xué)習(xí)收獲。

《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)2

一、本節(jié)課在新一輪課程改革下的設(shè)計(jì)理念:

數(shù)學(xué)是人與人之間精神層面上進(jìn)行的交往。課堂教學(xué)中的交往主要是教師與學(xué)生、學(xué)生與學(xué)生之間的交往。它需要運(yùn)用“對(duì)話式”的學(xué)習(xí)方式,采取多種教學(xué)策略,使學(xué)生在合作、探索、交流中發(fā)展能力。新課程中對(duì)學(xué)生的情感、體驗(yàn)、價(jià)值觀,以及獲取知識(shí)的渠道都有悖于傳統(tǒng)的教學(xué)模式,這正是教師在新課程中尋找新的教學(xué)方式的著眼點(diǎn)。應(yīng)該說,新的教學(xué)方式將伴隨著教師對(duì)新課程的逐漸透視而形成新的路徑。要破除原有教學(xué)活動(dòng)的框架,建立適應(yīng)師生相互交流的教學(xué)活動(dòng)體系;滿足學(xué)生的心理需求,實(shí)現(xiàn)教者與學(xué)者感情上的融洽和情感上的共鳴;給學(xué)生體驗(yàn)成功的機(jī)會(huì),把“要我學(xué)”變成“我要學(xué)”。我認(rèn)為教師角色的轉(zhuǎn)變一定會(huì)促進(jìn)學(xué)生的發(fā)展、促進(jìn)教育的長足發(fā)展,在未來的教學(xué)過程里,教師要做的是:幫助學(xué)生決定適當(dāng)?shù)膶W(xué)習(xí)目標(biāo),并確認(rèn)和協(xié)調(diào)達(dá)到目標(biāo)的途徑;指導(dǎo)學(xué)生形成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略;創(chuàng)造豐富的教學(xué)情境,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性;為學(xué)生提供各種便利,為學(xué)生的學(xué)習(xí)服務(wù);建立一個(gè)接納的、支持性的、寬容的課堂氣氛;作為學(xué)習(xí)的參與者,與學(xué)生分享自己的感情和想法;和學(xué)生一道尋找真理,能夠承認(rèn)自己的過失和錯(cuò)誤。教學(xué)情境的營造是教師走進(jìn)新課程中所面臨的挑戰(zhàn),適應(yīng)新一輪基礎(chǔ)教育課程改革的教學(xué)情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們?cè)诮虒W(xué)活動(dòng)的全過程中去探索、研究、發(fā)現(xiàn)、形成。

二、教材分析與處理:

三角形的內(nèi)角和定理揭示了組成三角形的三個(gè)角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

三、學(xué)生分析

處于這個(gè)年齡階段的學(xué)生有能力自己動(dòng)手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實(shí)際的數(shù)學(xué)建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗(yàn)成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問題的開放性與可擴(kuò)展性。

四、教學(xué)目標(biāo):

1.知識(shí)目標(biāo):在情境教學(xué)中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過程,并能進(jìn)行簡單應(yīng)用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會(huì)方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學(xué)中,通過有效措施讓學(xué)生在對(duì)解決問題過程的反思中,獲得解決問題的經(jīng)驗(yàn),進(jìn)行富有個(gè)性的學(xué)習(xí)。

2.能力目標(biāo):通過拼圖實(shí)踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學(xué)生的的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。

3.德育目標(biāo):通過添置輔助線教學(xué),滲透美的思想和方法教育。

4.情感、態(tài)度、價(jià)值觀:在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生樂于學(xué)數(shù)學(xué),遇到困難不避讓,在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。

五、重難點(diǎn)的確立:

1.重點(diǎn):三角形的內(nèi)角和定理探究與證明。

2.難點(diǎn):三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

六、教法、學(xué)法和教學(xué)手段:

采用“問題情境-建立模型-解釋、應(yīng)用與拓展”的模式展開教學(xué)。

采用對(duì)話式、嘗試教學(xué)、問題教學(xué)、分層教學(xué)等多種教學(xué)方法,以達(dá)到教學(xué)目的。

教學(xué)過程設(shè)計(jì):

一、創(chuàng)設(shè)情境,懸念引入

一堂新課的引入是老師與學(xué)生交往活動(dòng)的開始,是學(xué)生學(xué)習(xí)新知識(shí)的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關(guān)鍵。一個(gè)成功的引入,是讓學(xué)生感覺到他熟知的生活,可使學(xué)生迅速投入到課堂中來,對(duì)知識(shí)在最短的時(shí)間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學(xué)活動(dòng)將成為他們樂此不疲的快事了。

具體做法:拋出問題:“學(xué)校后勤部折疊長梯(電腦顯示圖形)打開時(shí)頂端的角是多少度呢?一名學(xué)生測出了兩個(gè)梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學(xué)生思考片刻后,我因勢利導(dǎo),指出學(xué)習(xí)了本節(jié)課你便能夠回答這個(gè)問題了。從而引入新課。

二、探索新知

1.動(dòng)手實(shí)踐,嘗試發(fā)現(xiàn):要求學(xué)生將事先準(zhǔn)備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點(diǎn)重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學(xué)生會(huì)發(fā)現(xiàn),三者拼成一個(gè)平角。此時(shí)讓學(xué)生互相觀察拼圖,驗(yàn)證結(jié)果。從觀察交流中,互學(xué)方法,達(dá)到生生互動(dòng)。待交流充分,分小組張貼所拼圖形,教師點(diǎn)評(píng),總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對(duì)有合作精神的小組給與表揚(yáng)。

(將拼圖展示在黑板上)

2.嘗試猜想:教師提問,從活動(dòng)中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時(shí)我走到學(xué)生中去,對(duì)有困難的小組給與適當(dāng)?shù)囊龑?dǎo)。之后由學(xué)生匯報(bào)組內(nèi)的發(fā)現(xiàn)。即三角形三個(gè)內(nèi)角的和等于180度。

3.證明猜想:先幫助學(xué)生回憶命題證明的基本步驟,然后讓學(xué)生獨(dú)立完成畫圖、寫出已知、求證的步驟,其他同學(xué)補(bǔ)充完善。下面讓學(xué)生對(duì)照剛才的動(dòng)手實(shí)踐,分小組探求證明方法。此環(huán)節(jié)應(yīng)留給學(xué)生充分的思考、討論、發(fā)現(xiàn)、體驗(yàn)的時(shí)間,讓學(xué)生在交流中互取所長,合作探索,找到證明的切入點(diǎn),體驗(yàn)成功。對(duì)有困難的學(xué)生要多加關(guān)注和指導(dǎo),不放棄任何一個(gè)學(xué)生,借此增進(jìn)教師與學(xué)有困難學(xué)生之間的關(guān)系,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。合作探究后,匯報(bào)證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到證明的目的。

4.學(xué)以致用,反饋練習(xí)

(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

∴∠B+∠C=100°在△ABC中,

(2)已知:∠A=80°,∠B=52°,則∠C=?

解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

又∵∠A=80°∠B=52°(已知)

∴∠C=48°

(3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

解:設(shè)∠A=x°,則∠B=3x°,∠C=5x°

由三角形內(nèi)角和定理得,x+3x+5x=180

解得,x=20

∴∠A=20°∠B=60°∠C=100°

(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學(xué)生以圖形由簡單到繁的直觀演示。

通過這組練習(xí)滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

5.鞏固提高,以生為本

(1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

(2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

本組練習(xí)是三角形內(nèi)角和定理與平角定義及角平分線等知識(shí)的綜合應(yīng)用.能較好的培養(yǎng)學(xué)生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗(yàn)。

6.思維拓展,開放發(fā)散

如圖,已知△PAD中,∠APD=120°,B、C為AD上的點(diǎn),△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。

本題旨在激發(fā)學(xué)生獨(dú)立思考和創(chuàng)新意識(shí),培養(yǎng)創(chuàng)新精神和實(shí)踐能力,發(fā)展個(gè)性思維。

三、歸納總結(jié),同化順應(yīng)

1.學(xué)生談體會(huì)

2.教師總結(jié),出示本節(jié)知識(shí)要點(diǎn)

3.教師點(diǎn)評(píng),對(duì)學(xué)生在課堂上的積極合作,大膽思考給與肯定,提出希望。

四、作業(yè):

1。必做題:習(xí)題3.1第10、11、12題

2.選做題:習(xí)題3.1第13、14題

五、板書設(shè)計(jì)

三角形內(nèi)角和

學(xué)生拼圖展示已知:求證:

證明:開放題:

《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)3

【教學(xué)目標(biāo)】

1、學(xué)生動(dòng)手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

2、在探究過程中,經(jīng)歷知識(shí)產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識(shí)和初步的空間思維能力。

3、體驗(yàn)探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

【教學(xué)重點(diǎn)】探究發(fā)現(xiàn)和驗(yàn)證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

【教學(xué)難點(diǎn)】對(duì)不同探究方法的指導(dǎo)和學(xué)生對(duì)規(guī)律的靈活應(yīng)用。

【教具準(zhǔn)備】課件、表格、學(xué)生準(zhǔn)備不同類型的三角形各一個(gè),量角器。

【教學(xué)過程】

一、激趣引入。

1、猜謎語

師:同學(xué)們喜歡猜謎語嗎?

生:喜歡。

師:那么,下面老師給大家出個(gè)謎語。請(qǐng)聽謎面:

形狀似座山,穩(wěn)定性能堅(jiān),三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?

生:三角形

2、介紹三角形按角的分類

師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

師分別出示卡片貼于黑板。

3、激發(fā)學(xué)生探知心里

師:大家會(huì)不會(huì)畫三角形啊?

生:會(huì)

師:下面請(qǐng)你拿出筆在本子上畫出一個(gè)三角形,但是我有個(gè)要求:畫出一個(gè)有兩個(gè)直角的三角形。試一試吧!

生:試著畫

師:畫出來沒有?

生:沒有

師:畫不出來了,是嗎?

生:是

師:有兩個(gè)直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習(xí)有關(guān)三角形角的知識(shí)“三角形內(nèi)角和”(板書課題)

二、探究新知。

1、認(rèn)識(shí)三角形的內(nèi)角

看看這三個(gè)字,說說看,什么是三角形的內(nèi)角?

生:就是三角形里面的角。

師:三角形有幾個(gè)內(nèi)角啊?

生:3個(gè)。

師:那么為了研究的時(shí)候比較方便,我們把這三個(gè)內(nèi)角標(biāo)上角1角2角3,請(qǐng)同學(xué)們也拿出桌子上三角形標(biāo)出(教師標(biāo)出)

師:你知道什么是三角形“內(nèi)角和”嗎?

生:三角形里面的角加起來的度數(shù)。

2、研究特殊三角形的內(nèi)角和

師:分別拿出一個(gè)直角三角板,請(qǐng)同學(xué)們看看這屬于什么三角形,說出每個(gè)角的度數(shù),那這個(gè)三角形的內(nèi)角和是多少度?

生:算一算:90°+60°+30°=180°90°+45°+45°=180°

師:180°也是我們學(xué)習(xí)過的什么角?

生:平角

師:從剛才兩個(gè)三角形的內(nèi)角和的計(jì)算中,你發(fā)現(xiàn)了什么?

3、研究一般三角形的內(nèi)角和

師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

生:

4、操作、驗(yàn)證

師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個(gè)辦法驗(yàn)證一下嗎?

要求:

(1)每4人為一個(gè)小組。

(2)每個(gè)小組都有不同類型的三角形,每種類型都需要驗(yàn)證,先討論一下,怎樣才能較快的完成任務(wù)?

(3)驗(yàn)證的方法不只一種,同學(xué)們要多動(dòng)動(dòng)腦子。

師:好,開始活動(dòng)!

師:巡視指導(dǎo)

師:好!請(qǐng)一組匯報(bào)測量結(jié)果。

生:通過測量我們發(fā)現(xiàn)每個(gè)三角形的三個(gè)內(nèi)角和都在180度左右。

師:其實(shí)三角形的內(nèi)角和就是180度,只是因?yàn)槲覀冊(cè)跍y量時(shí)存在了一些誤差,所以測量出的結(jié)果不準(zhǔn)確。

生:我是用撕的方法,把直角三角形三個(gè)內(nèi)角撕下來,拼在一起,拼成一個(gè)平角,是180度。

師:好!非常好!

師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

生:展示折一折我是用折的方法把銳角三角形三個(gè)角折在一起,組成一個(gè)平角,是180°。

師:老師也做了一個(gè)實(shí)驗(yàn)看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)

現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?

生:180度。

師:通過驗(yàn)證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論