版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
垂直于弦的直徑溫故知新:我們已經(jīng)學(xué)習(xí)過對稱的有關(guān)概念,下面復(fù)習(xí)兩道問題1)什么是軸對稱圖形?2)我們學(xué)習(xí)過的軸對稱圖形有哪些?1)如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。2)如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形。
導(dǎo)入新課一、探究新知探究1:折一折拿出一張圓形紙片,沿著圓的任意一條直徑對折,重復(fù)做幾次,你發(fā)現(xiàn)了什么?新課講解(1)圓是軸對稱圖形.(2)對稱軸是過圓點的直線(或任何一條直徑所在的直線).(3)圓的對稱軸有無窮多條.由此你能得到什么結(jié)論?探究2:如圖,AB是⊙O的一條弦,直徑CD⊥AB,垂足為E.你能發(fā)現(xiàn)圖中有哪些相等的線段和劣弧?線段:AE=BE·OABCDE弧:AC=BC,AD=BD((((理由如下:連接AO,BO.把圓沿著直徑CD折疊時,CD兩側(cè)的兩個半圓重合,點A與點B重合,AE與BE重合,AC和BC,AD與BD重合.⌒((((平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。逤D是直徑,CD⊥AB,∴AE=BE,⌒⌒AC=BC,⌒⌒AD=BD.·OABCDE這樣我們就得到垂徑定理:垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條?。M一步,我們還可以得到推論:如果圓的兩條弦互相平行,那么這兩條弦所夾的弧相等嗎?提示:這兩條弦在圓中的位置有兩種情況:①兩條弦在圓心的同側(cè)②兩條弦在圓心的兩側(cè)·OABCD·OABCD∴圓的兩條平行弦所夾的弧相等。將圓沿豎直直徑對折可發(fā)現(xiàn),兩條弦所夾的弧重合。“知二推三”(1)垂直于弦(2)過圓心(3)平分弦(4)平分弦所對的優(yōu)弧(5)平分弦所對的劣弧注意:當(dāng)具備了(1)(3)時,應(yīng)對另一條弦增加”不是直徑”的限制.溫馨提示:垂徑定理是圓中一個重要的定理,幾種條件要相互轉(zhuǎn)化,形成整體,才能運用自如.思考:“不是直徑”這個條件能去掉嗎?如果不能,請舉出反例.·OABCD圓的兩條直徑是互相平分的.你可以寫出相應(yīng)的命題嗎?相信自己是最棒的!垂徑定理的推論:
如圖,在下列五個條件中:只要具備其中兩個條件,就可推出其余三個結(jié)論.●OABCDM└①CD是直徑,③AM=BM,②CD⊥AB,⌒⌒④AC=BC,⌒⌒⑤AD=BD.垂徑定理及推論●OABCDM└條件結(jié)論命題①②③④⑤①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③垂直于弦的直徑平分弦,并且平分弦所的兩條弧.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧.弦的垂直平分線經(jīng)過圓心,并且平分這條弦所對的兩條弧.垂直于弦并且平分弦所對的一條弧的直線經(jīng)過圓心,并且平分弦和所對的另一條弧.平分弦并且平分弦所對的一條弧的直線經(jīng)過圓心,垂直于弦,并且平分弦所對的另一條弧.平分弦所對的兩條弧的直線經(jīng)過圓心,并且垂直平分弦.想一想:下列圖形是否具備垂徑定理的條件?如果不是,請說明為什么?是不是,因為沒有垂直是不是,因為CD沒有過圓心ABOCDEOABCABOEABDCOE垂徑定理的幾個基本圖形:ABOCDEABOEDABOCABO
DC自主練習(xí):1.判斷:(1)平分弦的直徑,平分這條弦所對的弧。(2)平分弦的直線,必定過圓心。(3)一條直線平分弦(這條弦不是直徑),那么這條直線垂直這條弦。
ABCDO(1)ABCD
O(2)ABCD
O(3)(4)弦的垂直平分線一定是圓的直徑。(5)平分弧的直線,平分這條弧所對的弦。(6)弦垂直于直徑,這條直徑就被弦平分。
ABC
O(4)ABCD
O(5)ABCD
O(6)E(7)平分弦的直徑垂直于弦。
我是趙州橋,我歷史悠久,是世界上現(xiàn)存最早、保存最好的巨大石拱橋。我的主橋是圓弧形,我的跨度(弧所對的弦的長)為37m,拱高(弧的中點到弦的距離)為7.23m,但一千多年了,我還不知道我主橋拱的半徑是多少,你能幫我算算嗎?二、垂徑定理的實際應(yīng)用ABOCD解:如圖,用AB表示主橋拱,設(shè)AB所在圓的圓心為O,半徑為R.經(jīng)過圓心O作弦AB的垂線OC垂足為D,與弧AB交于點C,則D是AB的中點,C是弧AB的中點,CD就是拱高.∴AB=37m,CD=7.23m.解得R≈27.3(m).即主橋拱半徑約為27.3m.=18.52+(R-7.23)2
∴AD=AB=18.5m,OD=OC-CD=R-7.23.如圖a、b,一弓形弦長為cm,弓形所在的圓的半徑為7cm,則弓形的高為_______________.C
DCBOADOAB圖a圖b2cm或12cm自主練習(xí):在圓中有關(guān)弦長a,半徑r,弦心距d(圓心到弦的距離),弓形高h的計算題時,常常通過連半徑或作弦心距構(gòu)造直角三角形,利用垂徑定理和勾股定理求解.涉及垂徑定理時輔助線的添加方法ABCDOhrdOABC·方法歸納:1.如圖,在⊙O中,弦AB的長為8cm,圓心O到AB的距離為3cm,求⊙O的半徑.·OABE解:答:⊙O的半徑為5cm.在Rt△AOE中課堂練習(xí)2.如圖,在⊙O中,AB、AC為互相垂直且相等的兩條弦,OD⊥AB于D,OE⊥AC于E,求證四邊形ADOE是正方形.D·OABCE證明:∴四邊形ADOE為矩形,又∵AC=AB∴AE=AD∴四邊形ADOE為正方形.
3.已知:如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB交小圓于C,D兩點。你認為AC和BD有什么關(guān)系?為什么?.ACDBOE證明:過O作OE⊥AB,垂足為E,則AE=BE,CE=DE?!郃E-CE=BE-DE
即AC=BD.注意:解決有關(guān)弦的問題,常過圓心作弦的弦心距,或作垂直于弦的直徑,它是一種常用輔助線的添法.今天我們學(xué)習(xí)了哪些知識?直徑平分弦直徑垂直于弦=>
直徑平分弦所對的弧直徑垂直于弦直徑平分弦(不是直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學(xué)生保險全保障協(xié)議
- 2025標識標牌行業(yè)發(fā)展趨勢分析與預(yù)測合同3篇
- 二零二五版辦公區(qū)域租賃合同(含物業(yè)增值服務(wù))
- 二手住宅交易服務(wù)合同(2024年版)3篇
- 二零二五年度上市公司專項財務(wù)咨詢與輔導(dǎo)協(xié)議
- 二零二五年度股權(quán)分割協(xié)議書模板
- 2025年度礦業(yè)權(quán)出讓與地質(zhì)安全監(jiān)管合同
- 2025年度車輛借出免責(zé)及車輛使用責(zé)任界定協(xié)議
- 二零二五年度文化藝術(shù)活動派遣協(xié)議范本
- 2025年度城市綜合體物業(yè)保安勞務(wù)管理合同
- 小兒甲型流感護理查房
- 霧化吸入療法合理用藥專家共識(2024版)解讀
- 2021年全國高考物理真題試卷及解析(全國已卷)
- 拆遷評估機構(gòu)選定方案
- 趣味知識問答100道
- 鋼管豎向承載力表
- 2024年新北師大版八年級上冊物理全冊教學(xué)課件(新版教材)
- 人教版數(shù)學(xué)四年級下冊核心素養(yǎng)目標全冊教學(xué)設(shè)計
- JJG 692-2010無創(chuàng)自動測量血壓計
- 三年級下冊口算天天100題(A4打印版)
- CSSD職業(yè)暴露與防護
評論
0/150
提交評論