2024屆江蘇省宿遷市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆江蘇省宿遷市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆江蘇省宿遷市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆江蘇省宿遷市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆江蘇省宿遷市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省宿遷市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某協(xié)會有200名會員,現(xiàn)要從中抽取40名會員作樣本,采用系統(tǒng)抽樣法等間距抽取樣本,將全體會員隨機(jī)按1~200編號,并按編號順序平均分為40組(1-5號,6-10號,…,196-200號).若第5組抽出的號碼為22,則第1組至第3組抽出的號碼依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,122.已知內(nèi)角的對邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形3.德國數(shù)學(xué)家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第6項為1(注:1可以多次出現(xiàn)),則的所有不同值的個數(shù)為()A.3 B.4 C.5 D.324.已知,則向量在方向上的投影為()A. B. C. D.5.已知且為常數(shù),圓,過圓內(nèi)一點的直線與圓相交于兩點,當(dāng)弦最短時,直線的方程為,則的值為()A.2 B.3 C.4 D.56.如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角為()A. B. C. D.7.設(shè)等差數(shù)列的前項和為,若公差,,則的值為()A.65 B.62 C.59 D.568.設(shè)平面向量,,若,則等于()A. B. C. D.9.向量,,若,則實數(shù)的值為A. B. C. D.10.將正整數(shù)按第組含個數(shù)分組:那么所在的組數(shù)為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點,從點測得點的仰角,點的仰角以及;從點測得.已知山高,則山高_(dá)_________.12.適合條件的角的取值范圍是______.13.向量滿足:,與的夾角為,則=_____________;14.某校高一、高二、高三分別有學(xué)生1600名、1200名、800名,為了解該校高中學(xué)生的牙齒健康狀況,按各年級的學(xué)生數(shù)進(jìn)行分層抽樣,若高三抽取20名學(xué)生,則高一、高二共抽取的學(xué)生數(shù)為.15.?dāng)?shù)列滿足,則等于______.16.設(shè)向量與向量共線,則實數(shù)等于__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,,,解三角形.18.某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于為一等品;指標(biāo)不小于且小于為二等品;指標(biāo)小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元?,F(xiàn)對學(xué)徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測結(jié)果統(tǒng)計如下:測試指標(biāo)甲乙根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率。求:(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?(3)從甲測試指標(biāo)為與乙測試指標(biāo)為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測試指標(biāo)差的絕對值大于的概率.19.如圖,已知圓:,點.(1)求經(jīng)過點且與圓相切的直線的方程;(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.20.已知平面向量,且(1)若是與共線的單位向量,求的坐標(biāo);(2)若,且,設(shè)向量與的夾角為,求.21.(1)解方程:;(2)有四個數(shù),其中前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,且第一個數(shù)與第四個數(shù)的和是16,第二個數(shù)與第三個數(shù)的和是12,求這四個數(shù);

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

根據(jù)系統(tǒng)抽樣原理求出抽樣間距,再根據(jù)第5組抽出的號碼求出第1組抽出的號碼,即可得出第2組、第3組抽取的號碼.【題目詳解】根據(jù)系統(tǒng)抽樣原理知,抽樣間距為200÷40=5,

當(dāng)?shù)?組抽出的號碼為22時,即22=4×5+2,

所以第1組至第3組抽出的號碼依次是2,7,1.

故選:B.【題目點撥】本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,是基礎(chǔ)題.2、B【解題分析】

根據(jù)正弦定理可得和,然后對進(jìn)行分類討論,結(jié)合三角形的性質(zhì),即可得到結(jié)果.【題目詳解】在中,因為,所以,又,所以,又當(dāng)時,因為,所以時等邊三角形;當(dāng)時,因為,所以不存在,綜上:一定是等邊三角形.故選:B.【題目點撥】本題主要考查了正弦定理的應(yīng)用,解題過程中注意兩解得情況,一般需要檢驗,本題屬于基礎(chǔ)題.3、A【解題分析】

由題意:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),我們可以從第六項為1出發(fā),逐項求出各項的取值,可得的所有不同值的個數(shù).【題目詳解】解:由題意:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第6項為1,則變換中的第5項一定是2,變換中的第4項一定是4,變換中的第3項可能是1,也可能是8,變換中的第2項可能是2,也可能是16,則的可能是4,也可能是5,也可能是32,故的所有可能的取值為,故選:A.【題目點撥】本題主要考查數(shù)列的應(yīng)用及簡單的邏輯推理,屬于中檔題.4、B【解題分析】

根據(jù)向量夾角公式求得夾角的余弦值;根據(jù)所求投影為求得結(jié)果.【題目詳解】由題意得:向量在方向上的投影為:本題正確選項:【題目點撥】本題考查向量在方向上的投影的求解問題,關(guān)鍵是能夠利用向量數(shù)量積求得向量夾角的余弦值.5、B【解題分析】

由圓的方程求出圓心坐標(biāo)與半徑,結(jié)合題意,可得過圓心與點(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關(guān)系列式求解.【題目詳解】圓C:化簡為圓心坐標(biāo)為,半徑為.如圖,由題意可得,當(dāng)弦最短時,過圓心與點(1,2)的直線與直線垂直.則,即a=1.故選:B.【題目點撥】本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時候較少;在求圓上的點到直線或者定點的距離時,一般是轉(zhuǎn)化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長或者切線長時,經(jīng)常用到垂徑定理.6、A【解題分析】

取的中點,連接、,作,垂足為點,證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數(shù)可求出.【題目詳解】如下圖所示,取的中點,連接、,作,垂足為點,是邊長為的等邊三角形,點為的中點,則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【題目點撥】本題考查直線與平面所成角的計算,求解時遵循“一作、二證、三計算”的原則,一作的是過點作面的垂線,有時也可以通過等體積法計算出點到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計算能力與推理能力,屬于中等題.7、A【解題分析】

先求出,再利用等差數(shù)列的性質(zhì)和求和公式可求.【題目詳解】,所以,故選A.【題目點撥】一般地,如果為等差數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)且;(3)且為等差數(shù)列;(4)為等差數(shù)列.8、D【解題分析】分析:由向量垂直的條件,求解,再由向量的模的公式和向量的數(shù)量積的運(yùn)算,即可求解結(jié)果.詳解:由題意,平面向量,且,所以,所以,即,又由,所以,故選D.點睛:本題主要考查了向量的數(shù)量積的運(yùn)算和向量模的求解,其中解答中熟記平面向量的數(shù)量積的運(yùn)算公式和向量模的計算公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、C【解題分析】

利用向量平行的坐標(biāo)表示,即可求出.【題目詳解】向量,,,即解得.故選.【題目點撥】本題主要考查向量平行的坐標(biāo)表示.10、B【解題分析】

觀察規(guī)律,看每一組的最后一個數(shù)與組數(shù)的關(guān)系,可知第n組最后一個數(shù)是2+3+4+…..+n+1=,然后再驗證求解.【題目詳解】觀察規(guī)律,第一組最后一個數(shù)是2=2,第二組最后一個數(shù)是5=2+3,第三組最后一個數(shù)是9=2+3+4,……,依此,第n組最后一個數(shù)是2+3+4+…..+n+1=.當(dāng)時,,所以所在的組數(shù)為63.故選:B【題目點撥】本題主要考查了數(shù)列的遞推,還考查了推理論證的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解題分析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點:正弦定理的應(yīng)用.12、【解題分析】

根據(jù)三角函數(shù)的符號法則,得,從而求出的取值范圍.【題目詳解】,的取值范圍的解集為.故答案為:【題目點撥】本題主要考查了三角函數(shù)符號法則的應(yīng)用問題,是基礎(chǔ)題.13、【解題分析】

根據(jù)模的計算公式可直接求解.【題目詳解】故填:.【題目點撥】本題考查了平面向量模的求法,屬于基礎(chǔ)題型.14、70【解題分析】設(shè)高一、高二抽取的人數(shù)分別為,則,解得.【考點】分層抽樣.15、15【解題分析】

先由,可求出,然后由,代入已知遞推公式即可求解?!绢}目詳解】故答案為15.【題目點撥】本題考查是遞推公式的應(yīng)用,是一道基礎(chǔ)題。16、3【解題分析】

利用向量共線的坐標(biāo)公式,列式求解.【題目詳解】因為向量與向量共線,所以,故答案為:3.【題目點撥】本題考查向量共線的坐標(biāo)公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)時,,,當(dāng),,【解題分析】

利用已知條件通過正弦定理求出,然后利用正弦定理或余弦定理轉(zhuǎn)化求解,即可求解.【題目詳解】在中,,由正弦定理可得:==,因為,所以或,當(dāng)時,因為,所以,從而,當(dāng)時,因為,所以,從而=.【題目點撥】本題主要考查了三角形的解法,正弦定理以及余弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理與余弦定理,合理運(yùn)用是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2)元;(3)【解題分析】

(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于25元”,即該產(chǎn)品的測試指標(biāo)不小于80,由此能求出乙生產(chǎn)一件產(chǎn)品,盈利不小于25元的概率.(2)由表格知甲生產(chǎn)的一等品、二等品、三等品比例為即,所以甲一天生產(chǎn)30件產(chǎn)品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生產(chǎn)的一等品、二等品、三等品比例為,所以乙一天生產(chǎn)20件產(chǎn)品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙兩人一天共為企業(yè)創(chuàng)收1195元.(3)設(shè)甲測試指標(biāo)為,的7件產(chǎn)品用,,,,,,表示,乙測試指標(biāo)為,的7件產(chǎn)品用,表示,利用列舉法能求出兩件產(chǎn)品的測試指標(biāo)差的絕對值大于10的概率.【題目詳解】(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于元”,即該產(chǎn)品的測試指標(biāo)不小于,則;(2)甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有件;甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有,即甲、乙兩人一天共為企業(yè)創(chuàng)收元;(3)設(shè)甲測試指標(biāo)為的件產(chǎn)品用,,,,表示,乙測試指標(biāo)為的件產(chǎn)品用,表示,用(,且)表示從件產(chǎn)品中選取件產(chǎn)品的一個結(jié)果.不同結(jié)果為,,,,,,,,,,,,,,,,,,,,,,共有36個不同結(jié)果.設(shè)事件表示“選取的兩件產(chǎn)品的測試指標(biāo)差的絕對值大于”,即從甲、乙生產(chǎn)的產(chǎn)品中各取件產(chǎn)品,不同的結(jié)果為,,,,,,,,,,,,,,共有個不同結(jié)果.則.【題目點撥】本題主要考查古典概型概率的求法,即按照古典概型的概率計算公式分別求出基本事件總數(shù)以及有利事件數(shù)即可算出概率,以及列舉法和隨機(jī)抽樣的應(yīng)用.19、(1)或;(2).【解題分析】試題分析:(1)設(shè)直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關(guān)系確定最值試題解析:(1)當(dāng)過點直線的斜率不存在時,其方程為,滿足條件.當(dāng)切線的斜率存在時,設(shè):,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長度的最大值為,最小值為,所以線段長度的取值范圍為.20、或【解題分析】分析:(1)由與共線,可設(shè),又由為單位向量,根據(jù),列出方程即可求得向量的坐標(biāo);(2)根據(jù)向量的夾角公式,即可求解向量與的夾角.詳解:與共線,又,則,為單位向量,,或,則的坐標(biāo)為或,,.點睛:對于平面向量的運(yùn)算問題,通常用到:1、平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;2、由向量的數(shù)量積的性質(zhì)有,,,因此利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題;3、本題主要利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論