版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古烏蘭察布集寧二中2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知四棱錐的底面是正方形,側(cè)棱長均相等,E是線段AB上的點(不含端點).設(shè)SE與BC所成的角為,SE與平面ABCD所成的角為β,二面角S-AB-C的平面角為,則()A. B. C. D.2.運行如圖程序,若輸入的是,則輸出的結(jié)果是()A.3 B.9 C.0 D.3.若,則()A. B. C. D.4.已知某線路公交車從6:30首發(fā),每5分鐘一班,甲、乙兩同學都從起點站坐車去學校,若甲每天到起點站的時間是在6:30~7:00任意時刻隨機到達,乙每天到起點站的時間是在6:45~7:15任意時刻隨機到達,那么甲、乙兩人搭乘同一輛公交車的概率是()A. B. C. D.5.如圖,B是AC上一點,分別以AB,BC,AC為直徑作半圓,從B作BD⊥AC,與半圓相交于D,AC=6,BD=22A.29 B.13 C.46.設(shè),是兩個不同的平面,a,b是兩條不同的直線,給出下列四個命題,正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則7.已知的內(nèi)角、、的對邊分別為、、,且,若,則的外接圓面積為()A. B. C. D.8.在直角中,,線段上有一點,線段上有一點,且,若,則()A.1 B. C. D.9.在中,,且,若,則()A.2 B.1 C. D.10.設(shè)等差數(shù)列{an}的前n項和為Sn.若a1+a3=6,S4=16,則a4=()A.6 B.7 C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列中,,以后各項由公式給出,則等于_____.12.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.13.不等式的解集是_______.14.若,且,則的最小值為_______.15.執(zhí)行如圖所示的程序框圖,則輸出的S的值是______.16.關(guān)于函數(shù),下列命題:①若存在,有時,成立;②在區(qū)間上是單調(diào)遞增;③函數(shù)的圖象關(guān)于點成中心對稱圖象;④將函數(shù)的圖象向左平移個單位后將與的圖象重合.其中正確的命題序號__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在直三棱柱中,,為的中點,為的中點.(1)求證:平面;(2)求證:.18.我市某商場銷售小飾品,已知小飾品的進價是每件3元,且日均銷售量件與銷售單價元可以用這一函數(shù)模型近似刻畫.當銷售單價為4元時,日均銷售量為400件,當銷售單價為8元時,日均銷售量為240件.試求出該小飾品的日均銷售利潤的最大值及此時的銷售單價.19.如果一個數(shù)列從第2項起,每一項與它前一項的差都大于2,則稱這個數(shù)列為“阿當數(shù)列”.(1)若數(shù)列為“阿當數(shù)列”,且,,,求實數(shù)的取值范圍;(2)是否存在首項為1的等差數(shù)列為“阿當數(shù)列”,且其前項和滿足?若存在,請求出的通項公式;若不存在,請說明理由.(3)已知等比數(shù)列的每一項均為正整數(shù),且為“阿當數(shù)列”,,,當數(shù)列不是“阿當數(shù)列”時,試判斷數(shù)列是否為“阿當數(shù)列”,并說明理由.20.如圖已知平面,,,,,,點,分別為,的中點.(1)求證://平面;(2)求直線與平面所成角的大小.21.如圖,已知以點為圓心的圓與直線相切.過點的動直線與圓A相交于M,N兩點,Q是的中點,直線與相交于點P.(1)求圓A的方程;(2)當時,求直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
根據(jù)題意,分別求出SE與BC所成的角、SE與平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱錐的線段大小關(guān)系即可比較大小.【題目詳解】四棱錐的底面是正方形,側(cè)棱長均相等,所以四棱錐為正四棱錐,(1)過作,交于,過底面中心作交于,連接,取中點,連接,如下圖(1)所示:則;(2)連接如下圖(2)所示,則;(3)連接,則,如下圖(3)所示:因為所以,而均為銳角,所以故選:C.【題目點撥】本題考查了異面直線夾角、直線與平面夾角、平面與平面夾角的求法,屬于中檔題.2、B【解題分析】分析:首先根據(jù)框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結(jié)果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結(jié)果為9,故選B.點睛:該題考查的是有關(guān)程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應(yīng)的函數(shù)解析式應(yīng)該代入哪個,從而求得最后的結(jié)果,屬于簡單題目.3、A【解題分析】試題分析:,故選A.考點:兩角和與差的正切公式.4、D【解題分析】
根據(jù)甲、乙的到達時間,作出可行域,然后考慮甲、乙能同乘一輛公交車對應(yīng)的區(qū)域面積,根據(jù)幾何概型的概率求解方法即可求解出對應(yīng)概率.【題目詳解】設(shè)甲到起點站的時間為:時分,乙到起點站的時間為時分,所以,記事件為甲乙搭乘同一輛公交車,所以,作出可行域以及目標區(qū)域如圖所示:由幾何概型的概率計算可知:.故選:D.【題目點撥】本題考查利用線性規(guī)劃的可行域解決幾何概型中的面積模型問題,對于分析和轉(zhuǎn)化的能力要求較高,注意幾何概型中面積模型的概率計算方法,難度較難.5、C【解題分析】
求得陰影部分的面積和最大的半圓的面積,再根據(jù)面積型幾何概型的概率計算公式求解.【題目詳解】連接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),則有8=x(6-x),得x=2,所以AB=2,?BC=4,由此可得圖中陰影部分的面積等于π×3【題目點撥】本題考查了與面積有關(guān)的幾何概型的概率的求法,當試驗結(jié)果所構(gòu)成的區(qū)域可用面積表示,用面積比計算概率.涉及了初中學習的射影定理,也可通過證明相似,求解各線段的長.6、C【解題分析】
利用線面、面面之間的位置關(guān)系逐一判斷即可.【題目詳解】對于A,若,,則平行、相交、異面均有可能,故A不正確;對于B,若,,,則垂直、平行均有可能,故B不正確;對于C,若,,,根據(jù)線面垂直的定義可知內(nèi)的兩條相交線線與內(nèi)的兩條相交線平行,故,故C正確;對于D,由C可知,D不正確;故選:C【題目點撥】本題考查了由線面平行、線面垂直判斷線面、線線、面面之間的位置關(guān)系,屬于基礎(chǔ)題.7、D【解題分析】
先化簡得,再利用正弦定理求出外接圓的半徑,即得的外接圓面積.【題目詳解】由題得,所以,所以,所以,所以.由正弦定理得,所以的外接圓面積為.故選D【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學生對這些知識的理解掌握水平和分析推理能力.8、D【解題分析】
依照題意采用解析法,建系求出目標向量坐標,用數(shù)量積的坐標表示即可求出結(jié)果.【題目詳解】如圖,以A為原點,AC,AB所在直線分別為軸建系,依題設(shè)A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【題目點撥】本題主要考查解析法在向量中的應(yīng)用,意在考查學生數(shù)形結(jié)合的能力.9、A【解題分析】
取的中點,連接,根據(jù),即可得解.【題目詳解】取的中點,連接,在中,,且,所以,.故選:A【題目點撥】此題考查求向量的數(shù)量積,涉及平面向量的線性運算,根據(jù)數(shù)量積的幾何意義求解,可以簡化計算.10、B【解題分析】
利用等差數(shù)列的性質(zhì)對已知條件進行化簡,由此求得的值.【題目詳解】依題意,解得.故選:B【題目點撥】本小題主要考查等差中項的性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
可以利用前項的積與前項的積的關(guān)系,分別求得第三項和第五項,即可求解,得到答案.【題目詳解】由題意知,數(shù)列中,,且,則當時,;當時,,則,當時,;當時,,則,所以.【題目點撥】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、【解題分析】
利用正弦定理得到,再根據(jù)有兩解得到,計算得到答案.【題目詳解】由正弦定理得:若有兩解:故答案為【題目點撥】本題考查了正弦定理,有兩解,意在考查學生的計算能力.13、【解題分析】
且,然后解一元二次不等式可得解集.【題目詳解】解:,∴且,或,不等式的解集為,故答案為:.【題目點撥】本題主要考查分式不等式的解法,關(guān)鍵是將分式不等式轉(zhuǎn)化為其等價形式,屬于基礎(chǔ)題.14、【解題分析】
將變換為,展開利用均值不等式得到答案.【題目詳解】若,且,則時等號成立.故答案為【題目點撥】本題考查了均值不等式,“1”的代換是解題的關(guān)鍵.15、4【解題分析】
模擬程序運行,觀察變量值的變化,尋找到規(guī)律周期性,確定輸出結(jié)果.【題目詳解】第1次循環(huán):,;第2次循環(huán):,;第3次循環(huán):,;第4次循環(huán):,;…;S關(guān)于i以4為周期,最后跳出循環(huán)時,此時.故答案為:4.【題目點撥】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題關(guān)鍵是由程序確定變量變化的規(guī)律:周期性.16、①③【解題分析】
根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時,成立;正確,對于②、在區(qū)間上是單調(diào)遞減;因此錯誤,對于③、,函數(shù)的圖象關(guān)于點成中心對稱圖象,成立.對于④、將函數(shù)的圖象向左平移個單位后得到,與的圖象重合錯誤,故答案為①③考點:命題的真假點評:主要是考查了三角函數(shù)的性質(zhì)的運用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解題分析】
(1)連、相交于點,證明四邊形為平行四邊形,得到,證明平面(2)證明平面推出【題目詳解】證明:(1)如圖,連、相交于點,,,,,,,∴四邊形為平行四邊形,,平面,平面,平面,…(2)連因為三棱柱是直三棱柱,底面,平面,,,,,,平面,平面,.【題目點撥】本題考查了線面平行,線線垂直,線面垂直,意在考查學生的空間想象能力.18、當該小飾品銷售單價定位8.5元時,日均銷售利潤的最大,為1210元.【解題分析】
根據(jù)已知條件,求出,利潤,轉(zhuǎn)化為求二次函數(shù)的最大值,即可求解.【題目詳解】解:由題意,得解得所以日均銷售量件與銷售單價元的函數(shù)關(guān)系為.日均銷售利潤.當,即時,.所以當該小飾品銷售單價定位8.5元時,日均銷售利潤的最大,為1210元.【題目點撥】本題考查函數(shù)實際應(yīng)用問題,確定函數(shù)解析式是關(guān)鍵,考查二次函數(shù)的最值,屬于基礎(chǔ)題19、(1);(2)不存在,理由見詳解;(3)見詳解.【解題分析】
(1)根據(jù)題意,得到,求解即可得出結(jié)果;(2)先假設(shè)存在等差數(shù)列為“阿當數(shù)列”,設(shè)公差為,則,根據(jù)等差數(shù)列求和公式,結(jié)合題中條件,得到,即對任意都成立,判斷出,推出矛盾,即可得出結(jié)果;(3)設(shè)等比數(shù)列的公比為,根據(jù)為“阿當數(shù)列”,推出在數(shù)列中,為最小項;在數(shù)列中,為最小項;得到,,再由數(shù)列每一項均為正整數(shù),得到,或,;分別討論,和,兩種情況,結(jié)合數(shù)列的增減性,即可得出結(jié)果.【題目詳解】(1)由題意可得:,,即,解得或;所以實數(shù)的取值范圍是;(2)假設(shè)存在等差數(shù)列為“阿當數(shù)列”,設(shè)公差為,則,由可得:,又,所以對任意都成立,即對任意都成立,因為,且,所以,與矛盾,因此,不存在等差數(shù)列為“阿當數(shù)列”;(3)設(shè)等比數(shù)列的公比為,則,且每一項均為正整數(shù),因為為“阿當數(shù)列”,所以,所以,;因為,即在數(shù)列中,為最小項;同理,在數(shù)列中,為最小項;由為“阿當數(shù)列”,只需,即,又因為數(shù)列不是“阿當數(shù)列”,所以,即,由數(shù)列每一項均為正整數(shù),可得:,所以,或,;當,時,,則,令,則,所以,即數(shù)列為遞增數(shù)列,所以,因為,所以對任意,都有,即數(shù)列是“阿當數(shù)列”;當,時,,則,顯然數(shù)列是遞減數(shù)列,,故數(shù)列不是“阿當數(shù)列”;綜上,當時,數(shù)列是“阿當數(shù)列”;當時,數(shù)列不是“阿當數(shù)列”.【題目點撥】本題主要考查數(shù)列的綜合,熟記等差數(shù)列與等比數(shù)列的通項公式與求和公式,以及數(shù)列的性質(zhì)即可,屬于常考題型.20、(1)見證明;(2)【解題分析】
(1)要證線面平行即證線線平行,本題連接A1B,(2)取中點,連接證明平面,再求出,得到.【題目詳解】(1)如圖,連接,在中,因為和分別是和的中點,所以.又因為平面,所以平面;取中點和中點,連接,,.因為和分別為和,所以,,故且,所以,且.又因為平面,所以平面,從而為直線與平面所成的角.在中,可得,所以.因為,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直線與平面所成角為.【題目點撥】求線面角一般有兩個方法:幾何法做出線上一點到平面的高,求出高;或利用等體積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版木制家具生產(chǎn)加工木工合作合同范本4篇
- 2025版委托檢測合同書-光纖網(wǎng)絡(luò)性能檢測技術(shù)3篇
- 二零二五版水產(chǎn)品電商平臺大數(shù)據(jù)分析服務(wù)合同2篇
- 2025年度母子公司新能源儲能技術(shù)研發(fā)合作合同3篇
- 《吳組緗天下太平》課件
- 單板加工自動化與智能化技術(shù)考核試卷
- 2025版互聯(lián)網(wǎng)醫(yī)療投資項目融資借款合同3篇
- 《物價上漲時政》課件
- 2025年度木工工具租賃與施工服務(wù)承包合同4篇
- 2025年兒童玩具連鎖店加盟合同
- 農(nóng)民工工資表格
- 【寒假預習】專題04 閱讀理解 20篇 集訓-2025年人教版(PEP)六年級英語下冊寒假提前學(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 2024年度窯爐施工協(xié)議詳例細則版B版
- 幼兒園籃球課培訓
- 【企業(yè)盈利能力探析的國內(nèi)外文獻綜述2400字】
- 統(tǒng)編版(2024新版)七年級《道德與法治》上冊第一單元《少年有夢》單元測試卷(含答案)
- 100道20以內(nèi)的口算題共20份
- 高三完形填空專項訓練單選(部分答案)
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
評論
0/150
提交評論