版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆寧夏石嘴山市一中數(shù)學(xué)高一下期末調(diào)研試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.表示不超過的最大整數(shù),設(shè)函數(shù),則函數(shù)的值域為()A. B. C. D.2.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.43.在△ABC中,D是邊BC的中點,則=A. B. C. D.4.已知變量,滿足約束條件則取最大值為()A. B. C.1 D.25.終邊在軸上的角的集合()A. B.C. D.6.若實數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.7.若實數(shù),滿足約束條件則的取值范圍為()A. B. C. D.8.已知是等差數(shù)列,,其前10項和,則其公差A(yù). B. C. D.9.().A. B. C. D.10.點M(4,m)關(guān)于點N(n,-3)的對稱點為P(6,-9)則()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=5二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),的反函數(shù)為__________.12.記,則函數(shù)的最小值為__________.13.命題“數(shù)列的前項和”成立的充要條件是________.(填一組符合題意的充要條件即可,所填答案中不得含有字母)14.已知數(shù)列的前項和為,則其通項公式__________.15.已知扇形的面積為,圓心角為,則該扇形半徑為__________.16.已知圓錐的高為,體積為,用平行于圓錐底面的平面截圓錐,得到的圓臺體積是,則該圓臺的高為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,點在邊上,為的平分線,.(1)求;(2)若,,求.18.如圖,在四棱錐中,,,,,,,分別為棱,的中點.(1)證明:平面.(2)證明:平面平面.19.已知,.(1)求及的值;(2)求的值.20.在三棱錐中,平面平面,,,分別是棱,上的點(1)為的中點,求證:平面平面.(2)若,平面,求的值.21.某公司為了提高職工的健身意識,鼓勵大家加入健步運動,要求200名職工每天晚上9:30上傳手機計步截圖,對于步數(shù)超過10000的予以獎勵.圖1為甲乙兩名職工在某一星期內(nèi)的運動步數(shù)統(tǒng)計圖,圖2為根據(jù)這星期內(nèi)某一天全體職工的運動步數(shù)做出的頻率分布直方圖.(1)在這一周內(nèi)任選兩天檢查,求甲乙兩人兩天全部獲獎的概率;(2)請根據(jù)頻率分布直方圖,求出該天運動步數(shù)不少于15000的人數(shù),并估計全體職工在該天的平均步數(shù);(3)如果當(dāng)天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
由已知可證是奇函數(shù),是互為相反數(shù),對是否為正數(shù)分類討論,即可求解.【題目詳解】的定義域為,,,是奇函數(shù),設(shè),若是整數(shù),則,若不是整數(shù),則.的值域是.故選:D.【題目點撥】本題考查函數(shù)性質(zhì)的應(yīng)用,考查對新函數(shù)定義的理解,考查分類討論思想,屬于中檔題.2、B【解題分析】
由題得在底面的投影為的外心,故為的中點,再利用數(shù)量積計算得解.【題目詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【題目點撥】本題主要考查平面向量的運算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.3、C【解題分析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.4、C【解題分析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【題目詳解】由約束條件作出可行域如圖,當(dāng),即點,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時,直線在軸上的截距最小,有最大值為.故選:C.【題目點撥】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.5、D【解題分析】
根據(jù)軸線角的定義即可求解.【題目詳解】A項,是終邊在軸正半軸的角的集合;B項,是終邊在軸的角的集合;C項,是終邊在軸正半軸的角的集合;D項,是終邊在軸的角的集合;綜上,D正確.故選:D【題目點撥】本題主要考查了軸線角的判斷,屬于基礎(chǔ)題.6、D【解題分析】
根據(jù)題意,由不等式的性質(zhì)依次分析選項,綜合即可得答案.【題目詳解】根據(jù)題意,依次分析選項:對于A、,時,有成立,故A錯誤;對于B、,時,有成立,故B錯誤;對于C、,時,有成立,故C錯誤;對于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【題目點撥】本題考查不等式的性質(zhì),對于錯誤的結(jié)論舉出反例即可.7、A【解題分析】
的幾何意義為點與點所在直線的斜率,根據(jù)不等式表示的可行域,可得出取值范圍.【題目詳解】的幾何意義為點與點所在直線的斜率.畫出如圖的可行域,當(dāng)直線經(jīng)過點時,;當(dāng)直線經(jīng)過點時,.的取值范圍為,故選A.【題目點撥】本題考查了不等式表示的可行域的畫法,以及目標(biāo)函數(shù)為分式時求取值范圍的方法.8、D【解題分析】,解得,則,故選D.9、D【解題分析】
運用誘導(dǎo)公式進(jìn)行化簡,最后逆用兩角和的正弦公式求值即可.【題目詳解】,故本題選D.【題目點撥】本題考查了正弦的誘導(dǎo)公式,考查了逆用兩角和的正弦公式,考查了特殊角的正弦值.10、D【解題分析】因為點M,P關(guān)于點N對稱,所以由中點坐標(biāo)公式可知.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【題目詳解】因為,所以,則反函數(shù)為:且.【題目點撥】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.12、4【解題分析】
利用求解.【題目詳解】,當(dāng)時,等號成立.故答案為:4【題目點撥】本題主要考查絕對值不等式求最值,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.13、數(shù)列為等差數(shù)列且,.【解題分析】
根據(jù)題意,設(shè)該數(shù)列為,由數(shù)列的前項和公式分析可得數(shù)列為等差數(shù)列且,,反之驗證可得成立,綜合即可得答案.【題目詳解】根據(jù)題意,設(shè)該數(shù)列為,若數(shù)列的前項和,則當(dāng)時,,當(dāng)時,,當(dāng)時,符合,故有數(shù)列為等差數(shù)列且,,反之當(dāng)數(shù)列為等差數(shù)列且,時,,;故數(shù)列的前項和”成立的充要條件是數(shù)列為等差數(shù)列且,,故答案為:數(shù)列為等差數(shù)列且,.【題目點撥】本題考查充分必要條件的判定,關(guān)鍵是掌握充分必要條件的定義,屬于基礎(chǔ)題.14、【解題分析】分析:先根據(jù)和項與通項關(guān)系得當(dāng)時,,再檢驗,時,不滿足上述式子,所以結(jié)果用分段函數(shù)表示.詳解:∵已知數(shù)列的前項和,∴當(dāng)時,,當(dāng)時,,經(jīng)檢驗,時,不滿足上述式子,故數(shù)列的通項公式.點睛:給出與的遞推關(guān)系求,常用思路是:一是利用轉(zhuǎn)化為的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為的遞推關(guān)系,先求出與之間的關(guān)系,再求.應(yīng)用關(guān)系式時,一定要注意分兩種情況,在求出結(jié)果后,看看這兩種情況能否整合在一起.15、2【解題分析】
將圓心角化為弧度制,再利用扇形面積得到答案.【題目詳解】圓心角為扇形的面積為故答案為2【題目點撥】本題考查了扇形的面積公式,屬于簡單題.16、【解題分析】設(shè)該圓臺的高為,由題意,得用平行于圓錐底面的平面截圓錐,得到的小圓錐體積是,則,解得,即該圓臺的高為3.點睛:本題考查圓錐的結(jié)構(gòu)特征;在處理圓錐的結(jié)構(gòu)特征時可記住常見結(jié)論,如本題中用平行于圓錐底面的平面截圓錐,截面與底面的面積之比是兩個圓錐高的比值的平方,所得兩個圓錐的體積之比是兩個圓錐高的比值的立方.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)令,正弦定理,得,代入面積公式計算得到答案.(2)由題意得到,化簡得到,,再利用面積公式得到答案.【題目詳解】(1)因為的平分線,令在中,,由正弦定理,得所以.(2)因為,所以,又由,得,,因為,所以所以.【題目點撥】本題考查了面積的計算,意在考查學(xué)生靈活利用正余弦定理和面積公式解決問題的能力.18、(1)見解析(2)見解析【解題分析】
(1)由勾股定理得,已知,故得證;(2)由題,E為AB中點,,故ABCD為平行四邊形,,由F為PB中點,EF為三角形APB的中位線,故,AP和AD相交于A,EF和CE相交于E,故得證.【題目詳解】證明:(1)因為,,,所以,由所以.因為,,所以平面.(2)因為為棱的中點,所以,因為,所以.因為,所以,所以四邊形為平行四邊形,所以,所以平面.因為,分別為棱,的中點,所以,所以平面.因為,平面,平面,所以平面平面.【題目點撥】本題考查直線和平面垂直的判定,平面和平面平行的判斷,比較基礎(chǔ).19、(1),;(2).【解題分析】
(1)由已知,,利用,可得的值,再利用及二倍角公式,分別求得及的值;(2)利用倍角公式、誘導(dǎo)公式,可得原式的值為.【題目詳解】(1)因為,,所以,所以,.(2)原式【題目點撥】若三個中,只要知道其中一個,則另外兩個都可求出,即知一求二.20、(1)證明見解析;(2)【解題分析】
(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進(jìn)而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【題目詳解】(1),為的中點,所以.又因為平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【題目點撥】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1),(2)80人,13.25千步,(3)星期二【解題分析】
(1)根據(jù)統(tǒng)計圖統(tǒng)計出甲乙兩人合格的天數(shù),再計算全部獲獎概率;(2)根據(jù)頻率分布直方圖求出人數(shù)及平均步數(shù);(3)根據(jù)頻率分布直方圖計算出甲乙的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年碳排放權(quán)交易與許可合同
- 2024年股東保密協(xié)議:保護商業(yè)秘密共創(chuàng)雙贏
- 2024年道路燈光設(shè)備安裝協(xié)議
- 2025年度離婚協(xié)議書爭議解決機制設(shè)計合同3篇
- 2024建筑工程整潔施工管理合同一
- 2024餐館廢棄物處理合作協(xié)議
- 2024年跨國健康產(chǎn)業(yè)投資與服務(wù)合同
- 2024軟件公司關(guān)于信息系統(tǒng)集成與運維的合同
- 2025年度城鄉(xiāng)公司農(nóng)村電商服務(wù)平臺開發(fā)與運營合同3篇
- 2024年礦區(qū)環(huán)境保護與修復(fù)協(xié)議
- 算術(shù)平方根2課件
- 【人教版】九年級化學(xué)上冊期末試卷及答案【【人教版】】
- 四年級數(shù)學(xué)上冊期末試卷及答案【可打印】
- (正式版)SHT 3227-2024 石油化工裝置固定水噴霧和水(泡沫)噴淋滅火系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 中小學(xué)人工智能教育方案
- 湖北省襄陽市襄城區(qū)2023-2024學(xué)年七年級上學(xué)期期末學(xué)業(yè)水平診斷英語試題
- 營銷組織方案
- 初中英語閱讀理解專項練習(xí)26篇(含答案)
- LS/T 1234-2023植物油儲存品質(zhì)判定規(guī)則
- 部編版五年級語文上冊期末 小古文閱讀 試卷附答案
- 煙花爆竹火災(zāi)事故的處置措施
評論
0/150
提交評論