版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省銅川市同官高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高三第一學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.2.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.3.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對(duì)稱;②圖象C關(guān)于點(diǎn)對(duì)稱;③由y=2sin2x的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C.A.① B.①② C.②③ D.①②③4.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.5.已知命題,那么為()A. B.C. D.6.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.7.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.9.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.10.已知為實(shí)數(shù)集,,,則()A. B. C. D.11.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米12.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.14.動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.15.已知函數(shù)恰好有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為____16.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.19.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)過原點(diǎn)且傾斜角為的射線與曲線分別交于兩點(diǎn)(異于原點(diǎn)),求的取值范圍.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.21.(12分)記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且直線的斜率為1,當(dāng)直線過點(diǎn)時(shí),.(1)求拋物線的方程;(2)若,直線與交于點(diǎn),,求直線的斜率.22.(10分)如圖所示,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.2、A【解析】
先化簡(jiǎn)求出,即可求得答案.【詳解】因?yàn)?,所以所以故選:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡(jiǎn)單題目.3、B【解析】
根據(jù)三角函數(shù)的對(duì)稱軸、對(duì)稱中心和圖象變換的知識(shí),判斷出正確的結(jié)論.【詳解】因?yàn)?,又,所以①正確.,所以②正確.將的圖象向右平移個(gè)單位長(zhǎng)度,得,所以③錯(cuò)誤.所以①②正確,③錯(cuò)誤.故選:B【點(diǎn)睛】本小題主要考查三角函數(shù)的對(duì)稱軸、對(duì)稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.4、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.5、B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點(diǎn)睛】本題主要考查特稱命題的否定,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.7、C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點(diǎn)睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.8、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時(shí),有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.9、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.10、C【解析】
求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.11、B【解析】
由于實(shí)際問題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.12、C【解析】
先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.14、【解析】
利用動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知?jiǎng)狱c(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時(shí)考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.15、【解析】
恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,令,,在遞增;,遞減,遞增,時(shí),在有一個(gè)零點(diǎn),在有2個(gè)零點(diǎn);故答案為:.【點(diǎn)睛】已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍是重點(diǎn)也是難點(diǎn),這類題一般用分離參數(shù)的方法,中檔題.16、1【解析】
按照個(gè)位上的9元的支付情況分類,三個(gè)數(shù)位上的錢數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類做到不重不漏,分步做到步驟完整.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)取中點(diǎn),連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標(biāo)系,為平面的一個(gè)法向量,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)取中點(diǎn),連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標(biāo)系,則,可取為平面的一個(gè)法向量.設(shè)平面的一個(gè)法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點(diǎn)睛】本題考查了面面垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1)極大值為;極小值為;(2)見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.19、(1),;(2).【解析】
(1)先將曲線化為普通方程,再由直角坐標(biāo)系與極坐標(biāo)系之間的轉(zhuǎn)化關(guān)系:,可得極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)由已知可得出射線的極坐標(biāo)方程為,聯(lián)立和的極坐標(biāo)方程可得點(diǎn)A和點(diǎn)B的極坐標(biāo),從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標(biāo)方程為;曲線的極坐標(biāo)方程為,即,其直角坐標(biāo)方程為;(2)射線的極坐標(biāo)方程為,聯(lián)立,聯(lián)立,的取值范圍是【點(diǎn)睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標(biāo)方程與普通方程的互化,以及在極坐標(biāo)下的直線與圓和拋物線的位置關(guān)系,屬于中檔題.20、(1);(2)【解析】
(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.21、(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長(zhǎng)公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點(diǎn)的縱坐標(biāo)為,然后直線的方程與直線的方程聯(lián)立解得交點(diǎn)H的縱坐標(biāo),說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因?yàn)橹本€的斜率為1,則,所以,因?yàn)?,所以線段中點(diǎn)的縱坐標(biāo)為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點(diǎn)的縱坐標(biāo)為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.【點(diǎn)睛】本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024獨(dú)家商業(yè)合作協(xié)議書例文版B版
- 2024版餐飲酒水供應(yīng)協(xié)議3篇
- 《冬季安全知識(shí)培訓(xùn)》課件
- 新能源銷售知識(shí)培訓(xùn)課件
- 2025年度土地流轉(zhuǎn)及農(nóng)業(yè)產(chǎn)業(yè)化合作合同3篇
- 輔警法律知識(shí)培訓(xùn)課件
- 2024短視頻平臺(tái)與廣告代理公司戰(zhàn)略合作協(xié)議
- 2024門窗銷售渠道拓展及代理合作協(xié)議范本3篇
- 2025年度GRC構(gòu)件環(huán)保認(rèn)證采購(gòu)合同3篇
- 2024游艇銷售及售后服務(wù)投訴處理合同范本3篇
- 2025年采購(gòu)部工作計(jì)劃
- 《防范于心反詐于行》中小學(xué)防范電信網(wǎng)絡(luò)詐騙知識(shí)宣傳課件
- 江蘇某小區(qū)園林施工組織設(shè)計(jì)方案
- 勘察工作質(zhì)量及保證措施
- 體外膜肺氧合(ECMO)并發(fā)癥及護(hù)理
- 墊江縣中醫(yī)院2018年11月份臨床技能中心教學(xué)設(shè)備招標(biāo)項(xiàng)目招標(biāo)文件
- 排放源統(tǒng)計(jì)(環(huán)統(tǒng))年報(bào)填報(bào)指南
- 反射療法師理論考試復(fù)習(xí)題及答案
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型國(guó)企)2025年
- 心電圖并發(fā)癥預(yù)防及處理
- 重慶市七中學(xué)2023-2024學(xué)年數(shù)學(xué)八上期末統(tǒng)考模擬試題【含解析】
評(píng)論
0/150
提交評(píng)論