版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省福州七中數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如果,那么下列不等式錯(cuò)誤的是()A. B.C. D.2.供電部門對(duì)某社區(qū)1000位居民2019年4月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說(shuō)法錯(cuò)誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費(fèi),選到的居民用電量在[30,40)一組的概率為13.在中,若則等于()A. B. C. D.4.已知為遞增等比數(shù)列,則()A. B.5 C.6 D.5.在中,內(nèi)角,,的對(duì)邊分別為,,,且,,為的面積,則的最大值為()A.1 B.2 C. D.6.在中,A,B,C的對(duì)邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形7.下圖是500名學(xué)生某次數(shù)學(xué)測(cè)試成績(jī)(單位:分)的頻率分布直方圖,則這500名學(xué)生中測(cè)試成績(jī)?cè)趨^(qū)間[90,100)中的學(xué)生人數(shù)是A.60 B.55 C.45 D.508.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為()A. B. C. D.9.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為()A. B. C. D.10.如圖所示,在四邊形中,,,.將四邊形沿對(duì)角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個(gè)數(shù)是()①;②;③與平面所成的角為;④四面體的體積為.A.個(gè) B.個(gè) C.個(gè) D.個(gè)二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,四棱錐中,所有棱長(zhǎng)均為2,是底面正方形中心,為中點(diǎn),則直線與直線所成角的余弦值為_(kāi)___________.12.已知數(shù)列滿足,則__________.13.學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽出了一個(gè)容量為100且支出在元的樣本,其頻率分布直方圖如圖,則支出在元的同學(xué)人數(shù)為_(kāi)_______14.已知四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為,若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),另一個(gè)底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為_(kāi)_______.15.無(wú)限循環(huán)小數(shù)化成最簡(jiǎn)分?jǐn)?shù)為_(kāi)_______16.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知,是第四象限角,求和的值.18.已知數(shù)列是等差數(shù)列,,.(1)從第幾項(xiàng)開(kāi)始;(2)求數(shù)列前n項(xiàng)和的最大值.19.已知扇形的半徑為3,面積為9,則該扇形的弧長(zhǎng)為_(kāi)__________.20.設(shè)和是兩個(gè)等差數(shù)列,記(),其中表示,,這個(gè)數(shù)中最大的數(shù).已知為數(shù)列的前項(xiàng)和,,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求,,的值,并求數(shù)列的通項(xiàng)公式;(3)求數(shù)列前項(xiàng)和.21.如圖,在平行四邊形中,邊所在直線的方程為,點(diǎn).(Ⅰ)求直線的方程;(Ⅱ)求邊上的高所在直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
利用不等式的性質(zhì)或比較法對(duì)各選項(xiàng)中不等式的正誤進(jìn)行判斷.【題目詳解】,,,則,,可得出,因此,A選項(xiàng)錯(cuò)誤,故選:A.【題目點(diǎn)撥】本題考查判斷不等式的正誤,常利用不等式的性質(zhì)或比較法來(lái)進(jìn)行判斷,考查推理能力,屬于基礎(chǔ)題.2、C【解題分析】
根據(jù)頻率分布直方圖逐一計(jì)算分析.【題目詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯(cuò)誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【題目點(diǎn)撥】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率3、D【解題分析】
由正弦定理,求得,再由,且,即可求解,得到答案.【題目詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【題目點(diǎn)撥】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、D【解題分析】
設(shè)數(shù)列的公比為,根據(jù)等比數(shù)列的性質(zhì),得,又由,求得,進(jìn)而可求解的值,得到答案.【題目詳解】根據(jù)題意,等比數(shù)列中,設(shè)其公比為,因?yàn)?,則有,又由,且,解得,所以,所以,故選D.【題目點(diǎn)撥】本題主要考查了等比數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解題分析】
先由正弦定理,將化為,結(jié)合余弦定理,求出,再結(jié)合正弦定理與三角形面積公式,可得,化簡(jiǎn)整理,即可得出結(jié)果.【題目詳解】因?yàn)椋钥苫癁?,即,可得,所?又由正弦定理得,,所以,當(dāng)且僅當(dāng)時(shí),取得最大值.故選C【題目點(diǎn)撥】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于??碱}型.6、A【解題分析】
利用平方化倍角公式和邊化角公式化簡(jiǎn)得到,結(jié)合三角形內(nèi)角和定理化簡(jiǎn)得到,即可確定的形狀.【題目詳解】化簡(jiǎn)得即即是直角三角形故選A【題目點(diǎn)撥】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡(jiǎn)時(shí),將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運(yùn)用,這一點(diǎn)往往容易忽略.7、D【解題分析】分析:根據(jù)頻率分布直方圖可得測(cè)試成績(jī)落在中的頻率,從而可得結(jié)果.詳解:由頻率分布直方圖可得測(cè)試成績(jī)落在中的頻率為,所以測(cè)試成績(jī)落在中的人數(shù)為,,故選D.點(diǎn)睛:本題主要考查頻率分布直方圖的應(yīng)用,屬于中檔題.直觀圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為;(2)組距與直方圖縱坐標(biāo)的乘積為該組數(shù)據(jù)的頻率.8、C【解題分析】
作出可行域,利用平移法即可求出.【題目詳解】作出不等式組表示的平面區(qū)域,如圖所示:當(dāng)直線平移至經(jīng)過(guò)直線與直線的交點(diǎn)時(shí),取得最大值,.故選:C.【題目點(diǎn)撥】本題主要考查簡(jiǎn)單線性規(guī)劃問(wèn)題的解法應(yīng)用,屬于基礎(chǔ)題.9、A【解題分析】
在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為.【題目詳解】根據(jù)對(duì)稱性,點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為.故選A.【題目點(diǎn)撥】本題考查空間直角坐標(biāo)系和點(diǎn)的對(duì)稱,屬于基礎(chǔ)題.10、B【解題分析】
根據(jù)題意,依次分析命題:對(duì)于①,可利用反證法說(shuō)明真假;對(duì)于②,為等腰直角三角形,平面,得平面,根據(jù)勾股定理逆定理可知;對(duì)于③,由與平面所成的角為知真假;對(duì)于④,利用等體積法求出所求體積進(jìn)行判定即可,綜合可得答案.【題目詳解】在四邊形中,,,則,可得,由,若,且,可得平面,平面,,這與矛盾,故①不正確;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正確;由②知平面,則直線與平面所成的角為,且有,,則為等腰直角三角形,且,則.故③不正確;四面體的體積為,故④不正確.故選:B.【題目點(diǎn)撥】本題主要考查了直線與平面所成的角,以及三棱錐的體積的計(jì)算,考查了空間想象能力,推理論證能力,解題的關(guān)鍵是須對(duì)每一個(gè)進(jìn)行逐一判定.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】
以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出直線與直線所成角的余弦值.【題目詳解】解:四棱錐中,所有棱長(zhǎng)均為2,是底面正方形中心,為中點(diǎn),,平面,以為原點(diǎn),為軸,為軸,為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,∴,,設(shè)直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【題目點(diǎn)撥】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),屬于中檔題.12、【解題分析】
數(shù)列為以為首項(xiàng),1為公差的等差數(shù)列?!绢}目詳解】因?yàn)樗杂炙詳?shù)列為以為首項(xiàng),1為公差的等差數(shù)列。所以所以故填【題目點(diǎn)撥】本題考查等差數(shù)列,屬于基礎(chǔ)題。13、30【解題分析】
由頻率分布直方圖求出支出在元的概率,由此能力求出支出在元的同學(xué)的人數(shù),得到答案.【題目詳解】由頻率分布直方圖,可得支出在元的概率,,所以支出在元的同學(xué)的人數(shù)為人.【題目點(diǎn)撥】本題主要考查了頻率分布直方圖的應(yīng)用,以及概率的計(jì)算,其中解答中熟記頻率分布直方圖的性質(zhì),合理求得相應(yīng)的概率是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解題分析】
先求出四棱錐的底面對(duì)角線的長(zhǎng)度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),可知四條側(cè)棱的中點(diǎn)連線為正方形,其對(duì)角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【題目詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點(diǎn)連線為正方形,邊長(zhǎng)為,該正方形對(duì)角線的長(zhǎng)為1,則圓柱的底面半徑為,四棱錐的底面是邊長(zhǎng)為的正方形,其對(duì)角線長(zhǎng)為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【題目點(diǎn)撥】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.15、【解題分析】
利用無(wú)窮等比數(shù)列求和的方法即可.【題目詳解】.故答案為:【題目點(diǎn)撥】本題主要考查了無(wú)窮等比數(shù)列的求和問(wèn)題,屬于基礎(chǔ)題型.16、【解題分析】
利用空間直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征解答即可.【題目詳解】在空間直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)對(duì)應(yīng)互為相反數(shù),所以點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為.故答案為:【題目點(diǎn)撥】本題主要考查空間直角坐標(biāo)系中對(duì)稱點(diǎn)的特點(diǎn),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、,【解題分析】
利用誘導(dǎo)公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關(guān)系式可求的值,根據(jù)誘導(dǎo)公式及倍角公式可求的值.【題目詳解】,又是第四象限角,所以,所以,.【題目點(diǎn)撥】本題考查同角的三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式以及二倍角公式,此題屬于基礎(chǔ)題.18、(1)從第27項(xiàng)開(kāi)始(2)【解題分析】
(1)寫出通項(xiàng)公式解不等式即可;(2)由(1)得數(shù)列最后一個(gè)負(fù)項(xiàng)為取得最大值處即可求解【題目詳解】(1).解得.所以從第27項(xiàng)開(kāi)始.(2)由上可知當(dāng)時(shí),最大,最大為.【題目點(diǎn)撥】本題考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的最值,考查推理能力,是基礎(chǔ)題19、6【解題分析】
直接利用扇形的面積公式,即可得到本題答案.【題目詳解】因?yàn)樯刃蔚陌霃?,扇形的面積,由,得,所以該扇形的弧長(zhǎng)為6.故答案為:6【題目點(diǎn)撥】本題主要考查扇形的面積公式的應(yīng)用.20、(1);(2),,,;(3)【解題分析】
(1)根據(jù)題意,化簡(jiǎn)得,運(yùn)用已知求公式,即可求解通項(xiàng)公式;(2)根據(jù)題意,寫出通項(xiàng),根據(jù)定義,令,可求解,,的值,再判斷單調(diào)遞減,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版勞動(dòng)合同勞務(wù)分包合同
- 二零二五年度創(chuàng)新科技投資基金交易服務(wù)合同2篇
- 2025年度綠色能源投資入股合同2篇
- 2025年度市政基礎(chǔ)設(shè)施項(xiàng)目居間代理合同2篇
- 2025年原煤運(yùn)輸安全保險(xiǎn)合同范本保障運(yùn)輸安全3篇
- 二零二五年度建筑工程勞務(wù)保險(xiǎn)合同3篇
- 二零二五年度企業(yè)年會(huì)活動(dòng)策劃與執(zhí)行合同范本3篇
- 二零二五年度律師委托協(xié)議:刑事辯護(hù)法律服務(wù)合同2篇
- 2024年自動(dòng)駕駛測(cè)試駕駛員協(xié)議3篇
- 二零二五年度建筑工程施工成本控制居間協(xié)議3篇
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí)
- 促銷活動(dòng)方案(共29頁(yè)).ppt
- 華中數(shù)控車床編程及操作
- 農(nóng)民專業(yè)合作社財(cái)務(wù)報(bào)表(三張表)
- 培訓(xùn)準(zhǔn)備工作清單
- 沉井工程檢驗(yàn)批全套【精選文檔】
- 貝類增養(yǎng)殖考試資料
- 旅游專業(yè)旅游概論試題有答案
- 3、起重工、焊工、電工安全技術(shù)交底
- 水稻幼穗分化八個(gè)時(shí)期的劃分表
- 卡特彼勒生產(chǎn)體系手冊(cè)(PDF62頁(yè))
評(píng)論
0/150
提交評(píng)論