版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆西安市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若集合,則集合()A. B. C. D.2.先后拋擲枚均勻的硬幣,至少出現(xiàn)一次反面的概率是()A. B. C. D.3.已知,且,則()A. B. C. D.4.在中,,,則的外接圓半徑為()A.1 B.2 C. D.5.在中,角,,的對邊分別為,,,若,,,則()A. B. C. D.6.如圖所示的圖形是弧三角形,又叫萊洛三角形,它是分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧得到的封閉圖形.在此圖形內(nèi)隨機取一點,則此點取自等邊三角形內(nèi)的概率是()A.32π-3 B.34π-237.已知正三角形ABC邊長為2,D是BC的中點,點E滿足,則()A. B. C. D.-18.設(shè),則()A. B.C. D.9.已知,取值如下表:014561.3m3m5.67.4畫散點圖分析可知:與線性相關(guān),且求得回歸方程為,則m的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.810.右邊莖葉圖記錄了甲、乙兩組各十名學(xué)生在高考前體檢中的體重(單位:).記甲組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為,乙組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________12.已知向量,,且,則_______.13.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.14.若首項為,公比為()的等比數(shù)列滿足,則的取值范圍是________.15.已知在中,,則____________.16.設(shè)是等差數(shù)列的前項和,若,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.隨著高校自主招生活動的持續(xù)開展,我市高中生掀起了參與數(shù)學(xué)興趣小組的熱潮.為調(diào)查我市高中生對數(shù)學(xué)學(xué)習(xí)的喜好程度,從甲、乙兩所高中各自隨機抽取了40名學(xué)生,記錄他們在一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時間,并將其分成了6個區(qū)間:、、、、、,整理得到如下頻率分布直方圖:(1)試估計甲高中學(xué)生一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時間的中位數(shù)甲(精確到0.01);(2)判斷從甲、乙兩所高中各自隨機抽取的40名學(xué)生一周內(nèi)平均每天學(xué)習(xí)數(shù)學(xué)的時間的平均值甲與乙及方差甲與乙的大小關(guān)系(只需寫出結(jié)論),并計算其中的甲、甲(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).18.已知函數(shù)的圖象向左平移個單位長度后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求函數(shù)的單調(diào)遞減區(qū)間及圖象的對稱軸方程.19.某中學(xué)從高三男生中隨機抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:組號分組頻數(shù)頻率第1組50.05第2組a0.35第3組30b第4組200.20第5組100.10合計n1.00(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;(2)為了能對學(xué)生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進行不同項目的體能測試,若在這7名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.20.已知是的內(nèi)角,分別是角的對邊.若,(1)求角的大小;(2)若,的面積為,為的中點,求21.在銳角中,角,,的對邊分別為,,,若.(1)求角;(2)若,則周長的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】試題分析:作數(shù)軸觀察易得.考點:集合的基本運算.2、D【解題分析】
先求得全是正面的概率,用減去這個概率求得至少出現(xiàn)一次反面的概率.【題目詳解】基本事件的總數(shù)為,全是正面的的事件數(shù)為,故全是正面的概率為,所以至少出現(xiàn)一次反面的概率為,故選D.【題目點撥】本小題主要考查古典概型概率計算,考查正難則反的思想,屬于基礎(chǔ)題.3、D【解題分析】
首先根據(jù),求得,結(jié)合角的范圍,利用平方關(guān)系,求得,利用題的條件,求得,之后將角進行配湊,使得,利用正弦的和角公式求得結(jié)果.【題目詳解】因為,所以,因為,所以.因為,,所以,所以,故選D.【題目點撥】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,正弦函數(shù)的和角公式,在解題的過程中,注意時刻關(guān)注角的范圍.4、A【解題分析】
由同角三角函數(shù)關(guān)系式,先求得.再結(jié)合正弦定理即可求得的外接圓半徑.【題目詳解】中,由同角三角函數(shù)關(guān)系式可得由正弦定理可得所以,即的外接圓半徑為1故選:A【題目點撥】本題考查了同角三角函數(shù)關(guān)系式的應(yīng)用,正弦定理求三角形外接圓半徑,屬于基礎(chǔ)題.5、A【解題分析】
由余弦定理可直接求出邊的長.【題目詳解】由余弦定理可得,,所以.故選A.【題目點撥】本題考查了余弦定理的運用,考查了計算能力,屬于基礎(chǔ)題.6、D【解題分析】
求出以A為圓心,以邊長為半徑,圓心角為∠BAC的扇形的面積,根據(jù)圖形的性質(zhì),可知它的3倍減去2倍的等邊三角形ABC【題目詳解】設(shè)等邊三角形ABC的邊長為a,設(shè)以A為圓心,以邊長為半徑,圓心角為∠BAC的扇形的面積為S1,則S1=萊洛三角形面積為S,則S=3S在此圖形內(nèi)隨機取一點,則此點取自等邊三角形內(nèi)的概率為P,P=S【題目點撥】本題考查了幾何概型.解決本題的關(guān)鍵是正確求出萊洛三角形的面積.考查了運算能力.7、C【解題分析】
化簡,分別計算,,代入得到答案.【題目詳解】正三角形ABC邊長為2,D是BC的中點,點E滿足故答案選C【題目點撥】本題考查了向量的計算,將是解題的關(guān)鍵,也可以建立直角坐標系解得答案.8、C【解題分析】
函數(shù),函數(shù)且,求出【題目詳解】因為且且所以故選:C【題目點撥】本題考查的是與反三角函數(shù)有關(guān)的定義域問題,較簡單.9、C【解題分析】
根據(jù)表格中的數(shù)據(jù),求得樣本中心為,代入回歸直線方程,即可求解.【題目詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,,即樣本中心為,代入回歸直線方程,即,解得,故選C.【題目點撥】本題主要考查了回歸直線方程的應(yīng)用,其中解答中熟記回歸直線方程的基本特征是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、D【解題分析】甲組數(shù)據(jù)的眾數(shù)為x1=64,乙組數(shù)據(jù)的眾數(shù)為x2=66,則x1<x2;甲組數(shù)據(jù)的中位數(shù)為y1==65,乙組數(shù)據(jù)的中位數(shù)為y2==66.5,則y1<y2.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【題目詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【題目點撥】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計算能力和分析能力.12、-2或3【解題分析】
用坐標表示向量,然后根據(jù)垂直關(guān)系得到坐標運算關(guān)系,求出結(jié)果.【題目詳解】由題意得:或本題正確結(jié)果:或【題目點撥】本題考查向量垂直的坐標表示,屬于基礎(chǔ)題.13、【解題分析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【題目詳解】作于,因為為正三棱錐,所以,為中點,連結(jié),則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【題目點撥】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.14、【解題分析】
由題意可得且,即且,,化簡可得由不等式的性質(zhì)可得的取值范圍.【題目詳解】解:,故有且,化簡可得且即故答案為:【題目點撥】本題考查數(shù)列極限以及不等式的性質(zhì),屬于中檔題.15、【解題分析】
根據(jù)可得,根據(jù)商數(shù)關(guān)系和平方關(guān)系可解得結(jié)果.【題目詳解】因為,所以且,又,所以,所以,因為,所以.故答案為:.【題目點撥】本題考查了三角函數(shù)的符號法則,考查了同角公式中的商數(shù)關(guān)系和平方關(guān)系式,屬于基礎(chǔ)題.16、1.【解題分析】
由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【題目詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【題目點撥】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)甲乙,甲乙,甲=,甲=【解題分析】
(1)根據(jù)每組小矩形的面積確定中位數(shù)所在區(qū)間,即可求解;(2)根據(jù)直方圖特征即可判定甲乙,甲乙,根據(jù)平均數(shù)和方差的公式分別計算求值.【題目詳解】(1)由甲高中頻率分布直方圖可得:第一組頻率0.1,第二組頻率0.2,第三組頻率0.3,所以中位數(shù)在第三組,甲;(2)根據(jù)兩個頻率分布直方圖可得:甲乙,甲乙甲=甲=【題目點撥】此題考查頻率分布直方圖,根據(jù)兩組直方圖特征判斷中位數(shù)和方差的大小關(guān)系,求中位數(shù),平均數(shù)和方差,關(guān)鍵在于熟練掌握相關(guān)數(shù)據(jù)的求法,準確計算得解.18、(1),;(2)減區(qū)間為,對稱軸方程為【解題分析】
(1)先根據(jù)平移后周期不變求得,再根據(jù)三角函數(shù)的平移方法求得即可.(2)根據(jù)(1)中,代入可得,利用輔助角公式求得,再代入調(diào)遞減區(qū)間及圖象的對稱軸方程求解即可.【題目詳解】(1)因為函數(shù)的圖象向左平移個單位長度后與函數(shù)圖象重合,所以.所以,因為,所以.(2)由(1),,所以,.令,解得所以函數(shù)的單調(diào)遞減區(qū)間為.令,可得圖象的對稱軸方程為.【題目點撥】本題主要考查了三角函數(shù)的平移運用以及輔助角公式.同時也考查了根據(jù)三角函數(shù)的解析式求解單調(diào)區(qū)間以及對稱軸等方法.屬于中檔題.19、(1)直方圖見解析;(2).【解題分析】
(1)由題意知,0.050,從而n=100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣,35名學(xué)生中抽取7名學(xué)生,設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為,利用列舉法能求出第4組中至少有一名學(xué)生被抽中的概率.【題目詳解】(1)由頻率分布表可得,所以,;(2)因為第1,4,5組共有35名學(xué)生,利用分層抽樣,在35名學(xué)生中抽取7名學(xué)生,每組分別為:第1組;第4組;第5組.設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為.則從7位學(xué)生中抽兩位學(xué)生的基本事件分別為:一共21種.記“第4組中至少有一名學(xué)生被抽中”為事件,即包含的基本事件分別為:一共3種,于是所以,.【題目點撥】本題考查概率的求法,考查頻率分布直方圖、列舉法等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.20、(1)(2)【解題分析】
(1)由,可將,轉(zhuǎn)化為,,代入原式,根據(jù)正弦定理可得,結(jié)合余弦定理,及,可得角C的大小。(2)因為,所以。所以為等腰三角形,根據(jù)面積為,可得,在,,,,結(jié)合余弦定理,即可求解?!绢}目詳解】(1)由得由正弦定理,得,即所以又,則(2)因為,所以.所以為等腰三角形,且頂角.因為所以.在中,,,,所以解得.【題目點撥】本題考查同角三角函數(shù)的基本關(guān)系,正弦定理,余弦定理,求面積公式,綜合性較強,考查學(xué)生分析推理,計算化簡的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 先進的科學(xué)文化北師大版-課件
- 腰椎椎間盤膨出癥療效對比分析-洞察分析
- 危險化學(xué)品安全管理工作總結(jié)范文(8篇)
- 異構(gòu)圖索引技術(shù)-洞察分析
- 碳排放監(jiān)測與減排技術(shù)-洞察分析
- 勤儉節(jié)約為主題的國旗下講話稿范文(12篇)
- 《測繪工程GPS》課件
- 辦公之技術(shù)宇宙提升工作效率的探索
- 辦公環(huán)境中的學(xué)生團隊建設(shè)與協(xié)作
- 公共建筑綠色照明設(shè)計與實踐案例分享
- GB/T 43700-2024滑雪場所的運行和管理規(guī)范
- 《3-6歲兒童學(xué)習(xí)與發(fā)展指南》知識競賽參考題庫500題(含答案)
- 水電站廠房設(shè)計-畢業(yè)設(shè)計
- 幼兒園園長的園里園外融合教育
- 綜合金融服務(wù)方案課件
- 《鎮(zhèn)原民俗》課件
- 新型電力系統(tǒng)簡介
- 施工安全管理體系及安全保證措施樣本
- 護理科普工作總結(jié)以及計劃
- 葡萄糖耐量試驗課件
- 304焊接工藝參數(shù)
評論
0/150
提交評論