版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省建水第六中學高一數(shù)學第二學期期末預測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線是圓在處的切線,點是圓上的動點,則點到直線的距離的最小值等于()A.1 B. C. D.22.為數(shù)列的前n項和,若,則的值為()A.-7 B.-4 C.-2 D.03.已知為定義在上的函數(shù),其圖象關(guān)于軸對稱,當時,有,且當時,,若方程()恰有5個不同的實數(shù)解,則的取值范圍是()A. B. C. D.4.我國古代數(shù)學名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1500石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得250粒內(nèi)夾谷30粒,則這批米內(nèi)夾谷約為多少石?A.180 B.160 C.90 D.3605.如圖是一個正方體的表面展開圖,若圖中“努”在正方體的后面,那么這個正方體的前面是()A.定 B.有 C.收 D.獲6.已知四面體中,,分別是,的中點,若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°7.如圖,一船自西向東勻速航行,上午10時到達一座燈塔P的南偏西75°距塔64海里的M處,下午2時到達這座燈塔的東南方向的N處,則這只船的航行速度為()海里/小時.A. B.C. D.8.若三點共線,則()A.13 B. C.9 D.9.在天氣預報中,有“降水概率預報”,例如預報“明天降水的概率為”,這是指()A.明天該地區(qū)有的地方降水,有的地方不降水B.明天該地區(qū)有的時間降水,其他時間不降水C.明天該地區(qū)降水的可能性為D.氣象臺的專家中有的人認為會降水,另外有的專家認為不降水10.用數(shù)學歸納法證明這一不等式時,應(yīng)注意必須為()A. B., C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集為_______________.12.若一個圓柱的側(cè)面展開圖是邊長為2的正方形,則此圓柱的體積為.13.若三角形ABC的三個角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對邊,三角形ABC的面積,則b的最小值是________.14.已知正方體的棱長為1,則三棱錐的體積為______.15.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.16.設(shè),,,若,則實數(shù)的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知關(guān)于,的方程:表示圓.(Ⅰ)求的取值范圍;(Ⅱ)若,過點作的切線,求切線方程.18.已知為常數(shù)且均不為零,數(shù)列的通項公式為并且成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)設(shè)是數(shù)列前項的和,求使得不等式成立的最小正整數(shù).19.已知函數(shù)f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范圍20.已知點,,動點滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結(jié)QH并延長交C于點R.(i)設(shè)O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時直線l的方程.21.設(shè)一元二次不等式的解集為.(Ⅰ)當時,求;(Ⅱ)當時,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
先求得切線方程,然后用點到直線距離減去半徑可得所求的最小值.【題目詳解】圓在點處的切線為,即,點是圓上的動點,圓心到直線的距離,∴點到直線的距離的最小值等于.故選D.【題目點撥】圓中的最值問題,往往轉(zhuǎn)化為圓心到幾何對象的距離的最值問題.此類問題是基礎(chǔ)題.2、A【解題分析】
依次求得的值,進而求得的值.【題目詳解】當時,;當時,,;當時,;故.故選:A.【題目點撥】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列每一項,屬于基礎(chǔ)題.3、C【解題分析】當時,有,所以,所以函數(shù)在上是周期為的函數(shù),從而當時,,有,又,即,有易知為定義在上的偶函數(shù),所以可作出函數(shù)的圖象與直線有個不同的交點,所以,解得,故選C.點睛:本題主要考查了函數(shù)的奇偶性、周期性、對稱性,函數(shù)與方程等知識的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想研究直線與函數(shù)圖象的交點問題,解答時現(xiàn)討論得到分段函數(shù)的解析式,然后做出函數(shù)的圖象,將方程恰有5個不同的實數(shù)解轉(zhuǎn)化為直線與函數(shù)的圖象由5個不同的交點,由數(shù)形結(jié)合法列出不等式組是解答的關(guān)鍵.4、A【解題分析】
根據(jù)數(shù)得250粒內(nèi)夾谷30粒,根據(jù)比例,即可求得結(jié)論?!绢}目詳解】設(shè)批米內(nèi)夾谷約為x石,則,解得:選A。【題目點撥】此題考查簡單隨機抽樣,根據(jù)部分的比重計算整體值。5、B【解題分析】
利用正方體及其表面展開圖的特點以及題意解題,把“努”在正方體的后面,然后把平面展開圖折成正方體,然后看“努”相對面.【題目詳解】解:這是一個正方體的平面展開圖,共有六個面,其中面“努”與面“有”相對,所以圖中“努”在正方體的后面,則這個正方體的前面是“有”.故選:.【題目點撥】本題考查了正方形相對兩個面上的文字問題,同時考查空間想象能力.注意正方體的空間圖形,從相對面入手,分析及解答問題,屬于基礎(chǔ)題.6、A【解題分析】
取的中點,利用三角形中位線定理,可以得到,與所成角為,運用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【題目詳解】取的中點連接,如下圖所示:因為,分別是,的中點,所以有,因為與所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【題目點撥】本題考查了異面直線所成角的求法,考查了正弦定理,取中點利用三角形中位線定理是解題的關(guān)鍵.7、C【解題分析】
先求出的值,再根據(jù)正弦定理求出的值,從而求得船的航行速度.【題目詳解】由題意,在中,由正弦定理得,得所以船的航行速度為(海里/小時)故選C項.【題目點撥】本題考查利用正弦定理解三角形,屬于簡單題.8、D【解題分析】
根據(jù)三點共線,有成立,解方程即可.【題目詳解】因為三點共線,所以有成立,因此,故本題選D.【題目點撥】本題考查了斜率公式的應(yīng)用,考查了三點共線的性質(zhì),考查了數(shù)學運算能力.9、C【解題分析】
預報“明天降水的概率為”,屬于隨機事件,可能下雨,也可能不下雨,即可得到答案.【題目詳解】由題意,天氣預報中,有“降水概率預報”,例如預報“明天降水的概率為”,這是指明天下雨的可能性是,故選C.【題目點撥】本題主要考查了隨機事件的概念及其概率,其中正確理解隨機事件的概率的概念是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、D【解題分析】
根據(jù)題意驗證,,時,不等式不成立,當時,不等式成立,即可得出答案.【題目詳解】解:當,,時,顯然不等式不成立,當時,不等式成立,故用數(shù)學歸納法證明這一不等式時,應(yīng)注意必須為,故選:.【題目點撥】本題考查數(shù)學歸納法的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】.12、2【解題分析】試題分析:設(shè)圓柱的底面半徑為r,高為h,底面積為S,體積為V,則有2πr=2?r=1π,故底面面積S=πr考點:圓柱的體積13、【解題分析】
先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【題目詳解】由題得,所以.由余弦定理得,當且僅當時取等.所以b的最小值是.故答案為:【題目點撥】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學生對這些知識的理解掌握水平.14、.【解題分析】
根據(jù)題意畫出正方體,由線段關(guān)系即可求得三棱錐的體積.【題目詳解】根據(jù)題意,畫出正方體如下圖所示:由棱錐的體積公式可知故答案為:【題目點撥】本題考查了三棱錐體積求法,通過轉(zhuǎn)換頂點法求棱錐的體積是常用方法,屬于基礎(chǔ)題.15、【解題分析】正方體體積為8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點睛:設(shè)幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側(cè)棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.16、【解題分析】
根據(jù)題意,可以求出,根據(jù)可得出,進行數(shù)量積的坐標運算即可求出的值.【題目詳解】故答案為:【題目點撥】本題考查向量垂直的坐標表示,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)或.【解題分析】
(Ⅰ)根據(jù)圓的一般方程表示圓的條件,可得關(guān)于的不等式,即可求得的取值范圍.(Ⅱ)將代入,可得圓的方程,化為標準方程.討論斜率是否存在兩種情況.當斜率不存在時,可直接求得直線方程;當斜率存在時,由點斜式設(shè)出直線方程,結(jié)合點到直線的距離即可求得斜率,即可得直線方程.【題目詳解】(Ⅰ)若方程表示圓則解得故實數(shù)的取值范圍為(Ⅱ)若,圓:①當過點的直線斜率不存在時,直線方程為圓心到直線的距離等于半徑,此時直線與相切②當過點的直線斜率存在時,不妨設(shè)斜率為則切線方程為,即由圓心到直線的距離等于半徑可知,解得,即切線方程為綜上所述,切線方程為或【題目點撥】本題考查了直線與圓的位置關(guān)系的應(yīng)用,圓的一般方程與標準方程的關(guān)系和轉(zhuǎn)化,屬于基礎(chǔ)題.18、(1);(2)【解題分析】
(1)由,可得,,,.根據(jù)、、成等差數(shù)列,、、成等比數(shù)列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分別利用等差數(shù)列與等比數(shù)列的求和公式即可得出.【題目詳解】(1),,,,.,,成等差數(shù)列,,,成等比數(shù)列.,,,,,.聯(lián)立解得:,.(2)由(1)可得:,,由,解得..【題目點撥】本題考查等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、分類討論方法、不等式的解法,考查推理能力與計算能力,屬于中檔題.19、(1);(2)[0,].【解題分析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本試題組要是考查了三角函數(shù)的運用.20、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解題分析】
(1)根據(jù)題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點坐標,表示出QH直線方程,采用點到直線距離公式求解;利用圓的幾何關(guān)系,表示出三角形的底和高,再結(jié)合函數(shù)最值問題進行求解【題目詳解】(1)由及兩點距離公式,有,化簡整理得,.所以曲線C的方程為;(2)(i)設(shè)直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當時.,所以,(ii)過O作于D,則D為QR中點,且由(i)知,,,又由,故的面積,由,有,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度城市綠化養(yǎng)護管理合同7篇
- 二零二五年度新能源汽車共享平臺合作協(xié)議4篇
- 2025年離婚協(xié)議中子女監(jiān)護權(quán)確定合同范本3篇
- 2025年船舶股份合作協(xié)議標準文本4篇
- 2025年度電器產(chǎn)品綠色供應(yīng)鏈管理合作協(xié)議12篇
- 2025年度農(nóng)業(yè)機械智能化生產(chǎn)線設(shè)計合同3篇
- 2025年度某工業(yè)園區(qū)水電暖設(shè)施建設(shè)及運營管理合同4篇
- 2025年度區(qū)塊鏈創(chuàng)業(yè)項目合伙人協(xié)議書模板3篇
- 二零二五年度物流運輸派遣勞務(wù)服務(wù)協(xié)議4篇
- 二零二五年度高端酒店門窗鋁型材定制及安裝服務(wù)合同4篇
- 2025年溫州市城發(fā)集團招聘筆試參考題庫含答案解析
- 2025年中小學春節(jié)安全教育主題班會課件
- 2025版高考物理復習知識清單
- 除數(shù)是兩位數(shù)的除法練習題(84道)
- 2025年度安全檢查計劃
- 2024年度工作總結(jié)與計劃標準版本(2篇)
- 全球半導體測試探針行業(yè)市場研究報告2024
- 反走私課件完整版本
- 2024年注冊計量師-一級注冊計量師考試近5年真題附答案
- 【可行性報告】2023年電動自行車行業(yè)項目可行性分析報告
- 臨床見習教案COPD地診療教案
評論
0/150
提交評論