版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
云南省曲靖市2024屆高一數(shù)學第二學期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.集合,則()A. B. C. D.2.已知等差數(shù)列的前項和為,若,則的值為A.10 B.15 C.25 D.303.設△的內(nèi)角所對的邊為,,,,則()A. B.或 C. D.或4.=()A. B. C. D.5.已知:平面內(nèi)不再同一條直線上的四點、、、滿足,若,則()A.1 B.2 C. D.6.用長為4,寬為2的矩形做側(cè)面圍成一個圓柱,此圓柱軸截面面積為()A.8 B. C. D.7.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.8.已知函數(shù)的最大值是2,則的值為()A. B. C. D.9.將兩個長、寬、高分別為5,4,3的長方體壘在一起,使其中兩個面完全重合,組成一個大長方體,則大長方體的外接球表面積的最大值為()A. B. C. D.10.球是棱長為的正方體的內(nèi)切球,則這個球的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列四個命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對任意的實數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個命題中正確的有_________(填寫所有正確命題的序號)12.已知為銳角,則_______.13.已知扇形的圓心角為,半徑為5,則扇形的弧長_________.14.已知數(shù)列中,且當時,則數(shù)列的前項和=__________.15.已知變量之間滿足線性相關關系,且之間的相關數(shù)據(jù)如下表所示:_____.12340.13.1416.當函數(shù)取得最大值時,=__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過點,且圓心在直線:上.(1)求圓的方程;(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.18.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的最小值及相應的值.19.已知數(shù)列的前項和,且;(1)求它的通項.(2)若,求數(shù)列的前項和.20.如圖,四棱錐中,底面為平行四邊形,,,底面.(1)證明:;(2)設,求點到面的距離.21.在平面直角坐標系中,已知點,,.(Ⅰ)求的坐標及;(Ⅱ)當實數(shù)為何值時,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結(jié)果即可.【題目詳解】因為集合,集合或,所以.故本題正確答案為C.【題目點撥】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認真計算,仔細檢查,屬基礎題.2、B【解題分析】
直接利用等差數(shù)列的性質(zhì)求出結(jié)果.【題目詳解】等差數(shù)列{an}的前n項和為Sn,若S17=85,則:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故選:B.【題目點撥】本題考查的知識要點:等差數(shù)列的通項公式的應用,及性質(zhì)的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題.3、B【解題分析】試題分析:因為,,,由正弦定理,因為是三角形的內(nèi)角,且,所以,故選B.考點:正弦定理4、A【解題分析】
試題分析:由誘導公式,故選A.考點:誘導公式.5、D【解題分析】
根據(jù)向量的加法原理對已知表示式轉(zhuǎn)化為所需向量的運算對照向量的系數(shù)求解.【題目詳解】根據(jù)向量的加法原理得所以,,解得且故選D.【題目點撥】本題考查向量的線性運算,屬于基礎題.6、B【解題分析】
分別討論當圓柱的高為4時,當圓柱的高為2時,求出圓柱軸截面面積即可得解.【題目詳解】解:當圓柱的高為4時,設圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當圓柱的高為2時,設圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【題目點撥】本題考查了圓柱軸截面面積的求法,屬基礎題.7、A【解題分析】
利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【題目詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【題目點撥】本題考查數(shù)列的遞推公式和周期數(shù)列的應用,考查學生分析解決問題的能力,屬于中檔題.8、B【解題分析】
根據(jù)誘導公式以及兩角和差的正余弦公式化簡,根據(jù)輔助角公式結(jié)合范圍求最值取得的條件即可得解.【題目詳解】由題函數(shù),最大值是2,所以,平方處理得:,所以,,所以.故選:B【題目點撥】此題考查根據(jù)三角函數(shù)的最值求參數(shù)的取值,考查對三角恒等變換的綜合應用.9、B【解題分析】
要計算長方體的外接球表面積就是要求出外接球的半徑,根據(jù)長方體的對角線是外接球的直徑這一性質(zhì),就可以求出外接球的表面積,分類討論:(1)長寬的兩個面重合;(2)長高的兩個面重合;(3)高寬兩個面重合,分別計算出新長方體的對角線,然后分別計算出外接球的表面積,最后通過比較即可求出最大值.【題目詳解】(1)當長寬的兩個面重合,新的長方體的長為5,寬為4,高為6,對角線長為:,所以大長方體的外接球表面積為;(2)當長高兩個面重合,新的長方體的長5,寬為8,高為3,對角線長為:,所以大長方體的外接球表面積為;(3)當寬高兩個面重合,新的長方體的長為10,寬為4,高為3,對角線長為:,所以大長方體的外接球表面積為,顯然大長方體的外接球表面積的最大值為,故本題選B.【題目點撥】本題考查了長方體外接球的半徑的求法,考查了分類討論思想,考查了球的表面積計算公式,考查了數(shù)學運算能力.10、A【解題分析】
棱長為的正方體的內(nèi)切球的半徑,由此能求出其體積.【題目詳解】棱長為的正方體的內(nèi)切球的半徑==1,體積.故選:A.【題目點撥】本題考查了正方體的內(nèi)切球的性質(zhì)和應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、②③④【解題分析】
①利用反例證明命題錯誤;②先判斷為其中一條對稱軸;③通過恒等變換化成;④對兩個解析式進行變形,得到定義域和對應關系均一樣.【題目詳解】對①,當,顯然,但,所以,不符合增函數(shù)的定義,故①錯;對②,當時,,所以為的一條對稱軸,當取,取時,顯然兩個數(shù)關于直線對稱,所以,即成立,故②對;對③,,,故③對;對④,因為,,兩個函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對.綜上所述,故填:②③④.【題目點撥】本題對三角函數(shù)的定義域、值域、單調(diào)性、對稱性、周期性等知識進行綜合考查,求解過程中要注意數(shù)形結(jié)合思想的應用.12、【解題分析】
利用同角三角函數(shù)的基本關系得,再根據(jù)角度關系,利用誘導公式即可得答案.【題目詳解】∵且,∴;∵,∴.故答案為:.【題目點撥】本題考查同角三角函數(shù)的基本關系、誘導公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號問題.13、【解題分析】
根據(jù)扇形的弧長公式進行求解即可.【題目詳解】∵扇形的圓心角α,半徑為r=5,∴扇形的弧長l=rα5.故答案為:.【題目點撥】本題主要考查扇形的弧長公式的計算,熟記弧長公式是解決本題的關鍵,屬于基礎題.14、【解題分析】
先利用累乘法計算,再通過裂項求和計算.【題目詳解】,數(shù)列的前項和故答案為:【題目點撥】本題考查了累乘法,裂項求和,屬于數(shù)列的常考題型.15、【解題分析】
根據(jù)回歸直線方程過樣本點的中心,代入數(shù)據(jù)即可計算出的值.【題目詳解】因為,,所以,解得.故答案為:.【題目點撥】本題考查根據(jù)回歸直線方程過樣本點的中心求參數(shù),難度較易.16、【解題分析】
利用輔助角將函數(shù)利用兩角差的正弦公式進行化簡,求得函數(shù)取得最大值時的與的關系,從而求得,,可得結(jié)果.【題目詳解】因為函數(shù),其中,,當時,函數(shù)取得最大值,此時,∴,,∴故答案為【題目點撥】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應用與正弦函數(shù)的性質(zhì),屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)在直線上存在定點,使得恒成立,詳見解析【解題分析】
(1)求出弦中垂線方程,由中垂線和直線相交得圓心坐標,再求出圓半徑,從而得圓標準方程;(2)直線斜率存在時,設方程為,代入圓的方程,得的一元二次方程,同時設交點為由韋達定理得,假設定點存在,設其為,由求得,再驗證所作直線斜率不存在時,點也滿足題意.【題目詳解】(1)的中點為,∴的垂直平分線的斜率為,∴的垂直平分線的方程為,∴的垂直平分線與直線交點為圓心,則,解得,又.∴圓的方程為.(2)當直線的斜率存在時,設直線的斜率為,則過點的直線方程為,故由,整理得,設,設,則,,,即,當斜率不存在時,成立,∴在直線上存在定點,使得恒成立【題目點撥】本題考查求圓的標準方程,考查與圓有關的定點問題.求圓的標準方程可先求出圓心坐標和圓的半徑,然后得標準方程,注意圓心一定在弦的中垂線上.定點問題,通常用設而不求思想,即設直線方程與圓方程聯(lián)立消元后得一元二次方程,設直線與圓的交點坐標為,由韋達定理得,然后設定點坐標如本題,再由條件求出,若不能求出說明定點不存在,如能求出值,注意驗證直線斜率不存在時,此定點也滿足題意.18、(1)(2)的最小值為,此時.【解題分析】
通過倍角公式,把化成標準形式,研究函數(shù)的相關性質(zhì)(周期性,單調(diào)性,奇偶性,對稱性,最值及最值相對于的變量),從而本題能順利完成【題目詳解】(1)因為.所以函數(shù)的最小正周期為.(2)當時,,此時,,,所以的最小值為,此時.【題目點撥】該類型考題關鍵是將化成性質(zhì),只有這樣,我們才能很好的去研究他的性質(zhì).19、(1)(2)【解題分析】
(1)由,利用與的關系式,即可求得數(shù)列的通項公式;(2)由(1)可得,利用乘公比錯位相減法,即可求得數(shù)列的前項和.【題目詳解】(1)由,當時,;當時,,當也成立,所以則通項;(2)由(1)可得,-,,兩式相減得所以數(shù)列的前項和為.【題目點撥】本題主要考查了數(shù)列和的關系、以及“錯位相減法”求和的應用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),著重考查了的邏輯思維能力及基本計算能力等.20、(1)見解析(2)【解題分析】試題分析:(Ⅰ)要證明線線垂直,一般用到線面垂直的性質(zhì)定理,即先要證線面垂直,首先由已知底面.知,因此要證平面,從而只要證,這在中可證;(Ⅱ)要求點到平面的距離,可過點作平面的垂線,由(Ⅰ)的證明,可得平面,從而有平面,因此平面平面,因此只要過作于,則就是的要作的垂線,線段的長就是所要求的距離.試題解析:(Ⅰ)證明:因為,,由余弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度版權(quán)授權(quán)使用合同(含授權(quán)范圍和費用支付)
- 2024年產(chǎn)品發(fā)布會合作合同
- 2024年廣州臨時工雇傭合同
- 2024年度短視頻內(nèi)容創(chuàng)作與版權(quán)交易合同
- 2024年工程吊籃長期租借協(xié)議
- 2024年度智能供應鏈管理軟件購買合同
- 2024酒店用品采購合同模板
- 2024年農(nóng)民工建筑行業(yè)用工合同
- 2024【工程勞務分包合同范本】裝飾工程分包合同范本3
- 2024年度電力工程吊裝安全合同
- GB/T 10193-1997電子設備用壓敏電阻器第1部分:總規(guī)范
- 基于solidworks flow simulation油浸式變壓器散熱優(yōu)化分析
- CPK與CP詳細講解資料(課堂PPT)
- 光動力治療在氣道腫瘤中的臨床應用課件
- 小學語文人教三年級上冊 群文閱讀《奇妙的中心句》
- 大數(shù)據(jù)和人工智能知識考試題庫600題(含答案)
- 2023年上海機場集團有限公司校園招聘筆試題庫及答案解析
- 鏡頭的角度和方位課件
- 污水處理常用藥劑簡介知識講解課件
- 五年級上冊英語課件-Unit 1《My future》第1課時牛津上海版(三起) (共28張PPT)
- 光交接箱施工規(guī)范方案
評論
0/150
提交評論