kummer判別法的證明_第1頁(yè)
kummer判別法的證明_第2頁(yè)
kummer判別法的證明_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

kummer判別法的證明

Kummer'stheoremisanimportantresultinnumbertheoryandalgebrawhichprovidesacriterionfordeterminingwhetheragivenprimepdividesthebinomialcoefficientC(n,m)forfixedintegersnandm.ThetheoremwasfirstintroducedbyErnstEduardKummerinthemid-19thcentury.Inthisproof,wewillnotuseanylinkstoexternalsourcesbutwillusethenotationcommonlyusedinnumbertheory.

Tobegin,let'sstateKummer'stheoremforbinomialcoefficients:

Kummer'sTheorem:Letpbeaprimeandn,mbenon-negativeintegers.Then,thelargestpowerofpthatdividesC(n,m)isgivenbythenumberofcarriesthatoccurwhenaddingnand(n-m)inbasep.

Now,let'sprovideanoutlineoftheproof:

1.First,weneedtounderstandthenotionofacarryinbasepaddition.Whenaddingtwonumbersinbasep,acarryoccurswheneverthesumoftwodigitsatthesameplacevaluepositionexceedsp-1.Forexample,whenadding12and17inbase10,thereisacarryinthetensplace,resultinginthesum2carry1.Wewillusethisconcepttocountthenumberofcarriesintheadditionofnand(n-m)inbasep.

2.AsthebinomialcoefficientC(n,m)representsthenumberofwaystochooseasubsetofsizemfromasetofsizen,itcanalsobeexpressedcombinatoriallyasC(n,m)=n!/(m!*(n-m)!).Notethattheprimepdividesafactork!forany0<k<pifandonlyifkisamultipleofp.Thisisbecausewhencalculatingthefactorial,theprimepwillappearasafactorineverymultipleofp.ThisobservationwillhelpusdeterminethepowerofpdividingthefactorialsinC(n,m).

3.Werewriten!/(m!*(n-m)!)as(n*(n-1)*...*(n-m+1))/(m*(m-1)*...*1)andanalyzeeachfactorindividually.Let'sintroducethenotationv_p(x)todenotethelargestpowerofpthatdividesx.Wewanttofindv_p(C(n,m)).

4.Weobservethateachfactorinthenumerator,(n*(n-1)*...*(n-m+1)),isdivisiblebypifandonlyifitisamultipleofp,i.e.,ifv_p(n*(n-1)*...*(n-m+1))>0.Similarly,eachfactorinthedenominator,(m*(m-1)*...*1),isdivisiblebypifandonlyifitisamultipleofp,whichoccurswhenv_p(m*(m-1)*...*1)>0.

5.Usingtheconceptofcarries,wecanrewrite(n*(n-1)*...*(n-m+1))asthesumofmterms,whereeachtermrepresentstheproductofmintegerschosenfromn,(n-1),...,(n-m+1).Ifwecalculatethesumoftheseterms(withoutcarryinganydigits)inbasep,weobtainthenumeratorofC(n,m).Similarly,wecanrewrite(m*(m-1)*...*1)asthesumofmtermsinbasep,representingthedenominatorofC(n,m).

6.ThenumberofcarriesthatoccurwhenaddingthenumeratoranddenominatorinbasepisdirectlyrelatedtothepowerofpthatdividesC(n,m).Specifically,thelargestpowerofpthatdividesC(n,m)isequaltothenumberofcarriesthatoccurwhenaddingthenumeratoranddenominatorinbasep.

7.Bycountingthenumberofcarries,wecandeterminewhetherpdividesC(n,m)ornot.Ifthenumberofcarriesisgreaterthanzero,thenpdividesC(n,m).Otherwise,pdoesnotdivideC(n,m).

Inconclusion,wehaveoutlinedtheproofofKummer'stheoremforbinomialcoefficients.Byanalyzingthenumberofcarriesthatoccurwhenaddingthenumeratoranddenomin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論