2024屆黑龍江哈爾濱市第十九中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
2024屆黑龍江哈爾濱市第十九中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
2024屆黑龍江哈爾濱市第十九中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
2024屆黑龍江哈爾濱市第十九中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
2024屆黑龍江哈爾濱市第十九中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆黑龍江哈爾濱市第十九中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在銳角中,內(nèi)角,,所對(duì)的邊分別為,,,若的面積為,且,則的周長(zhǎng)的取值范圍是A. B.C. D.2.若,則下列結(jié)論成立的是()A. B.C.的最小值為2 D.3.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.已知點(diǎn),則向量()A. B. C. D.5.已知是圓上的三點(diǎn),()A. B. C. D.6.已知,且,那么a,b,,的大小關(guān)系是()A. B.C. D.7.《九章算術(shù)》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長(zhǎng)分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機(jī)投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.8.已知下列各命題:①兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面:②若真線不平行于平面,則直線與平面有公共點(diǎn):③若兩個(gè)平面垂直,則一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無數(shù)條直線:④若兩個(gè)二面角的兩個(gè)面分別對(duì)應(yīng)垂直,則這兩個(gè)二面角相等或互補(bǔ).則其中正確的命題共有()個(gè)A. B. C. D.9.不等式的解集為()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)10.已知實(shí)數(shù)滿足,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)=coscos的最小正周期為________.12.函數(shù)的最大值為,最小值為,則的最小正周期為______.13.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐標(biāo)是.14.已知兩點(diǎn)A(2,1)、B(1,1+)滿足=(sinα,cosβ),α,β∈(﹣,),則α+β=_______________15.在等比數(shù)列中,已知,則=________________.16.如圖,圓錐形容器的高為圓錐內(nèi)水面的高為,且,若將圓錐形容器倒置,水面高為,則等于__________.(用含有的代數(shù)式表示)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),它的部分圖象如圖所示.(1)求函數(shù)的解析式;(2)當(dāng)時(shí),求函數(shù)的值域.18.已知扇形的面積為,弧長(zhǎng)為,設(shè)其圓心角為(1)求的弧度;(2)求的值.19.在中,分別是角的對(duì)邊,.(1)求的值;(2)若的面積,,求的值.20.如圖,在三棱柱中,是邊長(zhǎng)為4的正三角形,側(cè)面是矩形,分別是線段的中點(diǎn).(1)求證:平面;(2)若平面平面,,求三棱錐的體積.21.設(shè)遞增數(shù)列共有項(xiàng),定義集合,將集合中的數(shù)按從小到大排列得到數(shù)列;(1)若數(shù)列共有4項(xiàng),分別為,,,,寫出數(shù)列的各項(xiàng)的值;(2)設(shè)是公比為2的等比數(shù)列,且,若數(shù)列的所有項(xiàng)的和為4088,求和的值;(3)若,求證:為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng);

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

首先根據(jù)面積公式和余弦定理可將已知變形為,,然后根據(jù)正弦定理,將轉(zhuǎn)化為,利用,化簡(jiǎn)為,再根據(jù)三角形是銳角三角形,得到的范圍,轉(zhuǎn)化為三角函數(shù)求取值范圍的問題.【題目詳解】因?yàn)榈拿娣e為,所以,所以,由余弦定理可得,則,即,所以.由正弦定理可得,所以.因?yàn)闉殇J角三角形,所以,所以,則,即.故的周長(zhǎng)的取值范圍是.【題目點(diǎn)撥】本題考查了正余弦定理和三角形面積公式,以及輔助角公式和三角函數(shù)求取值范圍的問題,屬于中檔題型,本題需認(rèn)真審題,當(dāng)是銳角三角形時(shí),需滿足三個(gè)角都是銳角,即.2、D【解題分析】

由,根據(jù)不等式乘方性質(zhì)可判斷A不成立;由指數(shù)函數(shù)單調(diào)性可判斷B不成立;由基本不等式可判斷C不成立,D成立.【題目詳解】對(duì)于A,若,則有,故A不成立;對(duì)于B,根據(jù)指數(shù)函數(shù)單調(diào)性,函數(shù)單調(diào)遞減,,故B不成立;對(duì)于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;則D能成立.故選:D.【題目點(diǎn)撥】本題考查基本不等式、不等式的基本性質(zhì),考查不等式性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.3、D【解題分析】

由幾何體的三視圖得該幾何體是一個(gè)底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【題目詳解】由幾何體的三視圖得:

該幾何體是一個(gè)底面半徑,高的放在平面上的半圓柱,如圖,

故該幾何體的體積為:故選:D【題目點(diǎn)撥】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,是中檔題.4、D【解題分析】

利用終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),即可得到向量的坐標(biāo).【題目詳解】∵點(diǎn),,∴向量,,.故選:D.【題目點(diǎn)撥】本題考查向量的坐標(biāo)表示,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、C【解題分析】

先由等式,得出,并計(jì)算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計(jì)算出的值.【題目詳解】由于是圓上的三點(diǎn),,則,,故選C.【題目點(diǎn)撥】本題考查平面向量的數(shù)量積的計(jì)算,解題的關(guān)鍵就是要確定向量的模和夾角,考查計(jì)算能力,屬于中等題.6、D【解題分析】

直接用作差法比較它們的大小得解.【題目詳解】;;.故.故選:D【題目點(diǎn)撥】本題主要考查了作差法比較實(shí)數(shù)的大小,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.7、C【解題分析】

本題首先可以根據(jù)直角三角形的三邊長(zhǎng)求出三角形的內(nèi)切圓半徑,然后分別計(jì)算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計(jì)算公式即可得出答案.【題目詳解】如圖所示,直角三角形的斜邊長(zhǎng)為,設(shè)內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【題目點(diǎn)撥】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長(zhǎng)度型、角度型、面積型、體積型,求與面積有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題的總面積以及事件的面積;幾何概型問題還有以下幾點(diǎn)容易造成失分,在備考時(shí)要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯(cuò)誤;(2)基本事件對(duì)應(yīng)的區(qū)域測(cè)度把握不準(zhǔn)導(dǎo)致錯(cuò)誤;(3)利用幾何概型的概率公式時(shí),忽視驗(yàn)證事件是否等可能性導(dǎo)致錯(cuò)誤.8、B【解題分析】

①利用平面的基本性質(zhì)判斷.②利用直線與平面的位置關(guān)系判斷.③由面面垂直的性質(zhì)定理判斷.④通過舉反例來判斷.【題目詳解】①兩兩相交且不共點(diǎn),形成三個(gè)不共線的點(diǎn),確定一個(gè)平面,故正確.②若真線不平行于平面,則直線與平面相交或在平面內(nèi),所以有公共點(diǎn),故正確.③若兩個(gè)平面垂直,則一個(gè)平面內(nèi),若垂直交線的直線則垂直另一個(gè)平面,垂直另一平面內(nèi)所有直線,若不垂直與交線,也與另一平面內(nèi)垂直交線的直線及其平行線垂直,也有無數(shù)條,故正確.④若兩個(gè)二面角的兩個(gè)面分別對(duì)應(yīng)垂直,則這兩個(gè)二面角關(guān)系不確定,如圖:在正方體ABCD-A1B1C1D1中,二面角D-AA1-F與二面角D1-DC-A的兩個(gè)半平面就是分別對(duì)應(yīng)垂直的,但是這兩個(gè)二面角既不相等,也不互補(bǔ).故錯(cuò)誤..故選:B【題目點(diǎn)撥】本題主要考查了點(diǎn)、線、面的位置關(guān)系,還考查了推理論證和理解辨析的能力,屬于基礎(chǔ)題.9、A【解題分析】

將原不等式化簡(jiǎn)并因式分解,由此求得不等式的解集.【題目詳解】原不等式等價(jià)于,即,解得.故選A.【題目點(diǎn)撥】本小題主要考查一元二次不等式的解法,屬于基礎(chǔ)題.10、D【解題分析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.【題目詳解】由線性約束條件作出可行域,如下圖三角形陰影部分區(qū)域(含邊界),令,直線:,平移直線,當(dāng)過點(diǎn)時(shí)取得最大值,當(dāng)過點(diǎn)時(shí)取得最小值,所以的取值范圍是.【題目點(diǎn)撥】本題主要考查線性規(guī)劃的應(yīng)用.本題先正確的作出不等式組表示的平面區(qū)域,再結(jié)合目標(biāo)函數(shù)的幾何意義進(jìn)行解答是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解題分析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==212、【解題分析】

先換元,令,所以,利用一次函數(shù)的單調(diào)性,列出等式,求出,然后利用正切型函數(shù)的周期公式求出即可.【題目詳解】令,所以,由于,所以在上單調(diào)遞減,即有,解得,,故最小正周期為.【題目點(diǎn)撥】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,正切型函數(shù)周期公式的應(yīng)用,以及換元法的應(yīng)用.13、【解題分析】試題分析:因?yàn)?所以.考點(diǎn):向量坐標(biāo)運(yùn)算.14、或0【解題分析】

運(yùn)用向量的加減運(yùn)算和特殊角的三角函數(shù)值,可得所求和.【題目詳解】?jī)牲c(diǎn)A(2,1)、B(1,1)滿足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即為sinα,cosβ,α,β∈(),可得α,β=±,則α+β=0或.故答案為0或.【題目點(diǎn)撥】本題考查向量的加減運(yùn)算和三角方程的解法,考查運(yùn)能力,屬于基礎(chǔ)題.15、【解題分析】16、【解題分析】

根據(jù)水的體積不變,列出方程,解出的值,即可得到答案.【題目詳解】設(shè)圓錐形容器的底面面積為,則未倒置前液面的面積為,所以水的體積為,設(shè)倒置后液面面積為,則,所以,所以水的體積為,所以,解得.【題目點(diǎn)撥】本題主要考查了圓錐的結(jié)構(gòu)特征,以及圓錐的體積的計(jì)算與應(yīng)用,其中解答中熟練應(yīng)用圓錐的結(jié)構(gòu)特征,利用體積公式準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與運(yùn)算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】試題分析:(1)依題意,則,將點(diǎn)的坐標(biāo)代入函數(shù)的解析式可得,故,函數(shù)解析式為.(2)由題意可得,結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)的值域?yàn)?試題解析:(1)依題意,,故.將點(diǎn)的坐標(biāo)代入函數(shù)的解析式可得,則,,故,故函數(shù)解析式為.(2)當(dāng)時(shí),,則,,所以函數(shù)的值域?yàn)?點(diǎn)睛:求函數(shù)f(x)=Asin(ωx+φ)在區(qū)間[a,b]上值域的一般步驟:第一步:三角函數(shù)式的化簡(jiǎn),一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范圍確定ωx+φ的取值范圍,再確定sin(ωx+φ)(或cos(ωx+φ))的取值范圍.第三步:求出所求函數(shù)的值域(或最值).18、(1)(2)【解題分析】

(1)由弧長(zhǎng)求出半徑,再由面積求得圓心角;(2)先由誘導(dǎo)公式化簡(jiǎn)待求式為,利用兩角差的正切公式可求.【題目詳解】(1)設(shè)扇形的半徑為r,則,所以.由可得,解得.(2)..【題目點(diǎn)撥】本題考查扇形的弧長(zhǎng)與面積公式,考查誘導(dǎo)公式,同角間的三角函數(shù)關(guān)系,考查兩角差的正切公式.求值時(shí)用誘導(dǎo)公式化簡(jiǎn)是解題關(guān)鍵..19、(1)4;(2)【解題分析】

(1)利用兩角差的正弦和正弦定理將條件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面積公式求得,結(jié)合余弦定理可得,解方程即可得答案.【題目詳解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【題目點(diǎn)撥】本題考查兩角差的正弦、正弦定理、余弦定理的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.20、(1)見解析(2)【解題分析】

(1)取中點(diǎn)為,連接,由中位線定理證得,即證得平行四邊形,于是有,這樣就證得線面平行;(2)由等體積法變換后可計(jì)算.【題目詳解】證明:(1)取中點(diǎn)為,連接,是平行四邊形,平面,平面,∴平面解:(2)是線段中點(diǎn),則【題目點(diǎn)撥】本題考查線面平行的判定,考查棱錐的體積.線面平行的證明關(guān)鍵是找到線線平行,而棱錐的體積常常用等積變換,轉(zhuǎn)化頂點(diǎn)與底.21、(1),,,,;(2),;(3)證明見解析;【解題分析】

(1)根據(jù)題意從小到大計(jì)算中的值即可.(2)易得數(shù)列的所有項(xiàng)的和等于中的每個(gè)項(xiàng)重復(fù)加了次,再根據(jù)等比數(shù)列求和即可.(3)分別證明當(dāng)時(shí),若為等差數(shù)列則數(shù)列恰有7項(xiàng)以及當(dāng)數(shù)列恰有7項(xiàng)證明為等差數(shù)列即可.【題目詳解】(1)易得當(dāng),,,時(shí),,,,,.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論