




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆天津市河?xùn)|區(qū)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)等比數(shù)列的前項(xiàng)和為,且,則()A. B. C. D.2.設(shè),是橢圓的左、右焦點(diǎn),過(guò)的直線交橢圓于A,B兩點(diǎn),若最大值為5,則橢圓的離心率為()A. B. C. D.3.圓x-12+y-3A.1 B.2 C.2 D.34.在區(qū)間上隨機(jī)選取一個(gè)實(shí)數(shù),則事件“”發(fā)生的概率是()A. B. C. D.5.三角形的一個(gè)角為60°,夾這個(gè)角的兩邊之比為,則這個(gè)三角形的最大角的正弦值為()A. B. C. D.6.在邊長(zhǎng)為2的菱形中,,是的中點(diǎn),則A. B. C. D.7.已知數(shù)列滿足,,且,則A.4 B.5 C.6 D.88.在區(qū)間上任取兩個(gè)實(shí)數(shù),則滿足的概率為()A. B. C. D.9.如圖,向量,,,則向量可以表示為()A.B.C.D.10.“”是“、、”成等比數(shù)列的()條件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,,,則公差______.12.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說(shuō)法:①當(dāng)吋,不等式的解集②當(dāng)吋,不等式的解集為③當(dāng)>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說(shuō)法正確的序號(hào)是_______.13.把數(shù)列的各項(xiàng)排成如圖所示三角形狀,記表示第m行、第n個(gè)數(shù)的位置,則在圖中的位置可記為_(kāi)___________.14.某中學(xué)初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為_(kāi)_________.15.求值:_____.16.平面⊥平面,,,,直線,則直線與的位置關(guān)系是___.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知數(shù)列的各項(xiàng)均為正數(shù),對(duì)任意,它的前項(xiàng)和滿足,并且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),為數(shù)列的前項(xiàng)和,求.18.設(shè)等比數(shù)列的前n項(xiàng)和為.已知,,求和.19.已知圓心為的圓過(guò)點(diǎn),且與直線相切于點(diǎn)。(1)求圓的方程;(2)已知點(diǎn),且對(duì)于圓上任一點(diǎn),線段上存在異于點(diǎn)的一點(diǎn),使得(為常數(shù)),試判斷使的面積等于4的點(diǎn)有幾個(gè),并說(shuō)明理由。20.東莞市公交公司為了方便廣大市民出行,科學(xué)規(guī)劃公交車(chē)輛的投放,計(jì)劃在某個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車(chē)輛發(fā)車(chē)的間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,選取一天中的六個(gè)不同的時(shí)段進(jìn)行抽樣調(diào)查,經(jīng)過(guò)統(tǒng)計(jì)得到如下數(shù)據(jù):間隔時(shí)間(分鐘)81012141618等候人數(shù)(人)161923262933調(diào)查小組先從這6組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn),檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若兩組差值的絕對(duì)值均不超過(guò)1,則稱(chēng)所求的回歸方程是“理想回歸方程”.參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:,(1)若選取的是前4組數(shù)據(jù),求關(guān)于的線性回歸方程;(2)判斷(1)中的方程是否是“理想回歸方程”:(3)為了使等候的乘客不超過(guò)38人,試用(1)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少分鐘?21.如圖,在正方體,中,,,,,分別是棱,,,,的中點(diǎn).(1)求證:平面平面;(2)求平面將正方體分成的兩部分體積之比.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】
由,,聯(lián)立方程組,求出等比數(shù)列的首項(xiàng)和公比,然后求.【題目詳解】解:若,則,顯然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故選:C.【題目點(diǎn)撥】本題主要考查等比數(shù)列的前項(xiàng)和公式的應(yīng)用,要求熟練掌握,特別要注意對(duì)公比是否等于1要進(jìn)行討論,屬于基礎(chǔ)題.2、A【解題分析】
,故的最小值為,當(dāng)且僅當(dāng)軸時(shí),最小,此時(shí),計(jì)算得到答案.【題目詳解】,最大值為5,故的最小值為,當(dāng)且僅當(dāng)軸時(shí),最小,此時(shí),即又因?yàn)椋傻茫?故選:.【題目點(diǎn)撥】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.3、C【解題分析】
先計(jì)算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長(zhǎng).【題目詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長(zhǎng)l=2r故答案選C【題目點(diǎn)撥】本題考查了圓的弦長(zhǎng)公式,意在考查學(xué)生的計(jì)算能力.4、B【解題分析】
根據(jù)求出的范圍,再由區(qū)間長(zhǎng)度比即可得出結(jié)果.【題目詳解】區(qū)間的長(zhǎng)度為;由,解得,即,區(qū)間長(zhǎng)度為,事件“”發(fā)生的概率是.故選B.【題目點(diǎn)撥】本題主要考查與長(zhǎng)度有關(guān)的幾何概型,熟記概率計(jì)算公式即可,屬于基礎(chǔ)題型.5、B【解題分析】
由余弦定理,可得第三邊的長(zhǎng)度,再由大角對(duì)大邊可得最大角,然后由正弦定理可得最大角的正弦值.【題目詳解】解:三角形的一個(gè)角為,夾這個(gè)角的兩邊之比為,設(shè)夾這個(gè)角的兩邊分別為和,則由余弦定理,可得第三邊的長(zhǎng)度為,三角形的最大邊為,對(duì)應(yīng)的角最大,記為,則由正弦定理可得,故選:B.【題目點(diǎn)撥】本題主要考查正弦定理和余弦定理的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.6、D【解題分析】
選取向量為基底,用基底表示,然后計(jì)算.【題目詳解】由題意,,.故選D.【題目點(diǎn)撥】本題考查向量的數(shù)量積,平面向量的線性運(yùn)算,解題關(guān)鍵是選取基底,把向量用基底表示.7、B【解題分析】
利用,,依次求,觀察歸納出通項(xiàng)公式,從而求出的值.【題目詳解】∵數(shù)列滿足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此歸納猜想,∴.故選B.【題目點(diǎn)撥】本題考查了一個(gè)教復(fù)雜的遞推關(guān)系,本題的難點(diǎn)在于數(shù)列的項(xiàng)位于指數(shù)位置,不易化簡(jiǎn)和轉(zhuǎn)化,一般的求通項(xiàng)方法無(wú)法解決,當(dāng)遇見(jiàn)這種情況時(shí)一般我們就可以用“歸納”的方法處理,即通過(guò)求幾項(xiàng),然后觀察規(guī)律進(jìn)而得到結(jié)論.8、B【解題分析】試題分析:因?yàn)?,在區(qū)間上任取兩個(gè)實(shí)數(shù),所以區(qū)域的面積為4,其中滿足的平面區(qū)域面積為,故滿足的概率為,選B.考點(diǎn):本題主要考查幾何概型概率計(jì)算.點(diǎn)評(píng):簡(jiǎn)單題,幾何概型概率的計(jì)算,關(guān)鍵是認(rèn)清兩個(gè)“幾何度量”.9、C【解題分析】
利用平面向量加法和減法的運(yùn)算,求得的線性表示.【題目詳解】依題意,即,故選C.【題目點(diǎn)撥】本小題主要考查平面向量加法和減法的運(yùn)算,屬于基礎(chǔ)題.10、B【解題分析】
利用充分必要條件直接推理即可【題目詳解】若“、、”成等比數(shù)列,則;成立反之,若“”,如果a=b=G=0則、、”不成等比數(shù)列,故選B.【題目點(diǎn)撥】本題考查充分必要條件的判定,熟記等比數(shù)列的性質(zhì)是關(guān)鍵,是基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】
根據(jù)等差數(shù)列公差性質(zhì)列式得結(jié)果.【題目詳解】因?yàn)?,,所?【題目點(diǎn)撥】本題考查等差數(shù)列公差,考查基本分析求解能力,屬基礎(chǔ)題.12、③【解題分析】
利用等比數(shù)列的通項(xiàng)公式,解不等式后可得結(jié)論.【題目詳解】由題意,不等式變?yōu)?,即,若,則,當(dāng)或時(shí)解為,當(dāng)或時(shí),解為,時(shí),解為;若,則,當(dāng)或時(shí)解為,當(dāng)或時(shí),解為,時(shí),不等式無(wú)解.對(duì)照A、B、C、D,只有C正確.故選C.【題目點(diǎn)撥】本題考查等比數(shù)列的通項(xiàng)公式,考查解一元二次不等式,難點(diǎn)是解一元二次不等式,注意分類(lèi)討論,本題中需對(duì)二次項(xiàng)系數(shù)分正負(fù),然后以要對(duì)兩根分大小,另外還有一個(gè)是相應(yīng)的一元二次方程是否有實(shí)數(shù)解分類(lèi)(本題已經(jīng)有兩解,不需要這個(gè)分類(lèi)).13、【解題分析】
利用第m行共有個(gè)數(shù),前m行共有個(gè)數(shù),得的位置即可求解【題目詳解】因?yàn)榈趍行共有個(gè)數(shù),前m行共有個(gè)數(shù),所以應(yīng)該在第11行倒數(shù)第二個(gè)數(shù),所以的位置為.故答案為:【題目點(diǎn)撥】本題考查等差數(shù)列的通項(xiàng)和求和公式,發(fā)現(xiàn)每行個(gè)數(shù)成等差是關(guān)鍵,是基礎(chǔ)題14、【解題分析】
由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【題目詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【題目點(diǎn)撥】考查統(tǒng)計(jì)中讀圖能力,從圖中提取基本信息的基本能力.15、【解題分析】
根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決?!绢}目詳解】由題意.故答案為:.【題目點(diǎn)撥】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。16、【解題分析】
利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【題目詳解】在長(zhǎng)方體中,設(shè)平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因?yàn)?,由線面垂直的性質(zhì)定理,可得.【題目點(diǎn)撥】空間中點(diǎn)、線、面的位置關(guān)系問(wèn)題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進(jìn)行求解.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解題分析】
(1)根據(jù)與的關(guān)系,利用臨差法得到,知公差為3;再由代入遞推關(guān)系求;(2)觀察數(shù)列的通項(xiàng)公式,相鄰兩項(xiàng)的和有規(guī)律,故采用并項(xiàng)求和法,求其前項(xiàng)和.【題目詳解】(1)對(duì)任意,有,①當(dāng)時(shí),有,解得或.當(dāng)時(shí),有.②①-②并整理得.而數(shù)列的各項(xiàng)均為正數(shù),.當(dāng)時(shí),,此時(shí)成立;當(dāng)時(shí),,此時(shí),不成立,舍去.,.(2).【題目點(diǎn)撥】已知與的遞推關(guān)系,利用臨差法求時(shí),要注意對(duì)下標(biāo)與分兩種情況,即;數(shù)列求和時(shí)要先觀察通項(xiàng)特點(diǎn),再?zèng)Q定采用什么方法.18、或.【解題分析】
試題解析:(1)解得或即或(2)當(dāng)時(shí),當(dāng)時(shí),考點(diǎn):本題考查求通項(xiàng)及求和點(diǎn)評(píng):解決本題的關(guān)鍵是利用基本量法解題19、(1)(2)使的面積等于4的點(diǎn)有2個(gè)【解題分析】
(1)利用條件設(shè)圓的標(biāo)準(zhǔn)方程,由圓過(guò)點(diǎn)求t,確定圓方程.(2)設(shè),由確定阿波羅尼斯圓方程,與圓C為同一圓,可得,求出N點(diǎn)的坐標(biāo),建立ON方程,,再利用面積求點(diǎn)P到直線的距離,判斷與ON平行且距離為的兩條直線與圓C的位置關(guān)系可得結(jié)論.【題目詳解】(1)依題意可設(shè)圓心坐標(biāo)為,則半徑為,圓的方程可寫(xiě)成,因?yàn)閳A過(guò)點(diǎn),∴,∴,則圓的方程為。(2)由題知,直線的方程為,設(shè)滿足題意,設(shè),則,所以,則,因?yàn)樯鲜綄?duì)任意恒成立,所以,且,解得或(舍去,與重合)。所以點(diǎn),則,直線方程為,點(diǎn)到直線的距離,若存在點(diǎn)使的面積等于4,則,∴。①當(dāng)點(diǎn)在直線的上方時(shí),點(diǎn)到直線的距離的取值范圍為,∵,∴當(dāng)點(diǎn)在直線的上方時(shí),使的面積等于4的點(diǎn)有2個(gè);②當(dāng)點(diǎn)在直線的下方時(shí),點(diǎn)到直線的距離的取值范圍為,∵,∴當(dāng)點(diǎn)在直線的下方時(shí),使的面積等于4的點(diǎn)有0個(gè),綜上可知,使的面積等于4的點(diǎn)有2個(gè)?!绢}目點(diǎn)撥】本題考查圓的方程,直線與圓的位置關(guān)系,圓的第二定義,考查運(yùn)算能力,分析問(wèn)題解決問(wèn)題的能力,屬于難題.20、(1)(2)是“理想回歸方程”(3)估計(jì)間隔時(shí)間最多可以設(shè)置為21分鐘【解題分析】
(1)根據(jù)所給公式計(jì)算可得回歸方程;(2)由理想回歸方程的定義驗(yàn)證;(3)直接解不等式即可.【題目詳解】(1),(2)當(dāng)時(shí),當(dāng)時(shí),,所以判斷(1)中的方程是“理想回歸方程”(3)由,得估計(jì)間隔時(shí)間最多可以設(shè)置為21分鐘【題目點(diǎn)撥】本題考查回歸直線方程,解題時(shí)直接根據(jù)所給公式計(jì)算,考查了學(xué)生的運(yùn)算求解能力.21、(1)見(jiàn)解析(2)【解題分析】
(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 買(mǎi)賣(mài)種子合同范本
- 農(nóng)業(yè)委托種植合同范本
- 體育新城租房合同范本
- 剩余瓷磚售賣(mài)合同范本
- 人工包給勞務(wù)公司合同范本
- 協(xié)助出口退稅合同范本
- 農(nóng)資經(jīng)營(yíng)聘用合同范本
- 3人共同合作合同范本
- lng承運(yùn)合同范本
- 醫(yī)保專(zhuān)員勞動(dòng)合同范本
- 供應(yīng)鏈管理課件第5章供應(yīng)鏈合作伙伴選擇與評(píng)價(jià)
- 4D現(xiàn)場(chǎng)管理培訓(xùn)ppt課件(PPT 45頁(yè))
- 餐飲店面投資預(yù)算(900平方米)
- 預(yù)應(yīng)力工程施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)
- 檢驗(yàn)科危急值管理.
- 旅游資源規(guī)劃與開(kāi)發(fā)實(shí)訓(xùn)指導(dǎo)書(shū)
- 立體幾何專(zhuān)題:距離和角
- DBJ-T01-43-2003_(北京)通用家庭居室裝飾工程質(zhì)量驗(yàn)收標(biāo)準(zhǔn)
- 16949客戶滿意度調(diào)查分析報(bào)告
- 生產(chǎn)線外包方案
- 2.通信光纜線路(管道)工程施工及驗(yàn)收技術(shù)規(guī)程要點(diǎn)
評(píng)論
0/150
提交評(píng)論