![2024屆江蘇省南師附中數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第1頁](http://file4.renrendoc.com/view11/M00/25/36/wKhkGWWixdOAMA5CAAIMqA5bgOo644.jpg)
![2024屆江蘇省南師附中數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第2頁](http://file4.renrendoc.com/view11/M00/25/36/wKhkGWWixdOAMA5CAAIMqA5bgOo6442.jpg)
![2024屆江蘇省南師附中數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第3頁](http://file4.renrendoc.com/view11/M00/25/36/wKhkGWWixdOAMA5CAAIMqA5bgOo6443.jpg)
![2024屆江蘇省南師附中數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第4頁](http://file4.renrendoc.com/view11/M00/25/36/wKhkGWWixdOAMA5CAAIMqA5bgOo6444.jpg)
![2024屆江蘇省南師附中數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第5頁](http://file4.renrendoc.com/view11/M00/25/36/wKhkGWWixdOAMA5CAAIMqA5bgOo6445.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省南師附中數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.三棱錐中,平面且是邊長為的等邊三角形,則該三棱錐外接球的表面積為()A. B. C. D.2.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對(duì)弦所圍成.公式中“弦”指圓弧所對(duì)的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得弧田面積為()A. B. C. D.3.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)4.若,則下列不等式恒成立的是A. B. C. D.5.設(shè)是公比為的無窮等比數(shù)列,若的前四項(xiàng)之和等于第五項(xiàng)起以后所有項(xiàng)之和,則數(shù)列是()A.公比為的等比數(shù)列B.公比為的等比數(shù)列C.公比為或的等比數(shù)列D.公比為或的等比數(shù)列6.執(zhí)行下邊的程序框圖,如果輸出的值為1,則輸入的值為()A.0 B. C.0或 D.0或17.函數(shù),若方程恰有三個(gè)不同的解,記為,則的取值范圍是()A. B. C. D.8.已知圓,圓,則圓與圓的位置關(guān)系是()A.相離 B.相交 C.外切 D.內(nèi)切9.已知的內(nèi)角、、的對(duì)邊分別為、、,邊上的高為,且,則的最大值是()A. B. C. D.10.已知等差數(shù)列的前項(xiàng)和為.且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.向邊長為的正方形內(nèi)隨機(jī)投粒豆子,其中粒豆子落在到正方形的頂點(diǎn)的距離不大于的區(qū)域內(nèi)(圖中陰影區(qū)域),由此可估計(jì)的近似值為______.(保留四位有效數(shù)字)12.一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1500,2000)(元)月收入段應(yīng)抽出人.13.在中,角所對(duì)邊長分別為,若,則的最小值為__________.14.《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第5節(jié)的容積為升;15.有6根細(xì)木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.16.在中,,,,點(diǎn)在線段上,若,則的面積是_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象過點(diǎn).(1)求的值;(2)判斷的奇偶性并證明.18.如圖所示,在直三棱柱中,,,M、N分別為、的中點(diǎn).求證:平面;求證:平面.19.化簡.20.已知函數(shù)的部分圖象如圖所示.(1)求函數(shù)的解析式,并求出的單調(diào)遞增區(qū)間;(2)若,求的值21.已知,,與的夾角是(1)計(jì)算:①,②;(2)當(dāng)為何值時(shí),與垂直?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】根據(jù)已知中底面是邊長為的正三角形,,平面,可得此三棱錐外接球,即為以為底面以為高的正三棱柱的外接球
∵是邊長為的正三角形,∴的外接圓半徑球心到的外接圓圓心的距離故球的半徑故三棱錐外接球的表面積故選C.2、C【解題分析】
首先根據(jù)圖形計(jì)算出矢,弦,再帶入弧田面積公式即可.【題目詳解】如圖所示:因?yàn)?,,為等邊三角?所以,矢,弦..故選:C【題目點(diǎn)撥】本題主要考查扇形面積公式,同時(shí)考查學(xué)生對(duì)題意的理解,屬于中檔題.3、B【解題分析】
由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【題目詳解】由題,因?yàn)闉橐辉尾坏仁剑詀≠0又因?yàn)閍x所以a>0Δ=故選B【題目點(diǎn)撥】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.4、D【解題分析】∵∴設(shè)代入可知均不正確對(duì)于,根據(jù)冪函數(shù)的性質(zhì)即可判斷正確故選D5、B【解題分析】
根據(jù)題意可得,帶入等比數(shù)列前和即可解決?!绢}目詳解】根據(jù)題意,若的前四項(xiàng)之和等于第五項(xiàng)起以后所有項(xiàng)之和,則,又由是公比為的無窮等比數(shù)列,則,變形可得,則,數(shù)列為的奇數(shù)項(xiàng)組成的數(shù)列,則數(shù)列為公比為的等比數(shù)列;故選:B.【題目點(diǎn)撥】本題主要考查了利用等比數(shù)列前項(xiàng)和計(jì)算公比,屬于基礎(chǔ)題。6、C【解題分析】
根據(jù)程序框圖,轉(zhuǎn)化為條件函數(shù)進(jìn)行計(jì)算即可.【題目詳解】程序?qū)?yīng)的函數(shù)為y,若x≤0,由y=1得ex=1,得x=0,滿足條件.若x>0,由y=2﹣lnx=1,得lnx=1,即x=e,滿足條件.綜上x=0或e,故選C.【題目點(diǎn)撥】本題主要考查程序框圖的識(shí)別和應(yīng)用,根據(jù)條件轉(zhuǎn)化為分段函數(shù)是解決本題的關(guān)鍵.7、D【解題分析】
由方程恰有三個(gè)不同的解,作出的圖象,確定,的取值范圍,得到的對(duì)稱性,利用數(shù)形結(jié)合進(jìn)行求解即可.【題目詳解】設(shè)
作出函數(shù)的圖象如圖:由
則當(dāng)
時(shí)
,,
即函數(shù)的一條對(duì)稱軸為
,要使方程恰有三個(gè)不同的解,則
,
此時(shí)
,
關(guān)于
對(duì)稱,則
當(dāng)
,即
,則
則
的取值范圍是,選D.【題目點(diǎn)撥】本題主要考查了方程與函數(shù),數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵,數(shù)學(xué)結(jié)合也是數(shù)學(xué)中比較重要的一種思想方法.8、C【解題分析】,,,,,即兩圓外切,故選.點(diǎn)睛:判斷圓與圓的位置關(guān)系的常見方法(1)幾何法:利用圓心距與兩半徑和與差的關(guān)系.(2)切線法:根據(jù)公切線條數(shù)確定.(3)數(shù)形結(jié)合法:直接根據(jù)圖形確定9、C【解題分析】
由余弦定理化簡可得,利用三角形面積公式可得,解得,利用正弦函數(shù)的圖象和性質(zhì)即可得解其最大值.【題目詳解】由余弦定理可得:,故:,而,故,所以:.故選.【題目點(diǎn)撥】本題主要考查了余弦定理,三角形面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.10、C【解題分析】
根據(jù)等差數(shù)列性質(zhì)可知,求得,代入可求得結(jié)果.【題目詳解】本題正確選項(xiàng):【題目點(diǎn)撥】本題考查三角函數(shù)值的求解,關(guān)鍵是能夠靈活應(yīng)用等差數(shù)列下標(biāo)和的性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3.1【解題分析】
根據(jù)已知條件求出滿足條件的正方形的面積,及到頂點(diǎn)的距離不大于1的區(qū)域(圖中陰影區(qū)域)的面積比值等于頻率即可求出答案.【題目詳解】依題意得,正方形的面積,陰影部分的面積,故落在到正方形的頂點(diǎn)的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的概率,隨機(jī)投10000粒豆子,其中1968粒豆子落在到正方形的頂點(diǎn)的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的頻率為:,即有:,解得:,故答案為3.1.【題目點(diǎn)撥】幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件的基本事件對(duì)應(yīng)的“幾何度量”(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”,最后根據(jù)求解.利用頻率約等于概率,即可求解。12、16【解題分析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應(yīng)抽出81×1.2=16人??键c(diǎn):?頻率分布直方圖的應(yīng)用;?分層抽樣。13、【解題分析】
根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【題目詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時(shí)取等號(hào)故故的最小值為故答案為:【題目點(diǎn)撥】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.14、【解題分析】試題分析:由題意可知,解得,所以.考點(diǎn):等差數(shù)列通項(xiàng)公式.15、【解題分析】
分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結(jié)合三棱錐的結(jié)構(gòu)特征,即可求出結(jié)果.【題目詳解】當(dāng)較長的兩條棱所在直線相交時(shí),如圖所示:不妨設(shè),,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時(shí)較長的兩條棱所在直線所成角的余弦值為;當(dāng)較長的兩條棱所在直線異面時(shí),不妨設(shè),,則,取CD的中點(diǎn)為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以O(shè)A+OB<AB,不能構(gòu)成三角形。所以此情況不存在。故答案為:.【題目點(diǎn)撥】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結(jié)構(gòu)特征即可,屬于??碱}型.16、【解題分析】
過作于,設(shè),運(yùn)用勾股定理和三角形的面積公式,計(jì)算可得所求值.【題目詳解】過作于,設(shè),,,,又,可得,即有,可得的面積為.故答案為.【題目點(diǎn)撥】本題考查解三角形,考查勾股定理的運(yùn)用,以及三角形的面積公式,考查化簡運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)奇函數(shù),證明見解析【解題分析】
(1)將代入解析式,解方程即可.【題目詳解】(1)由題知:,解得.(2).,定義域?yàn)椋?,.所以,所以為奇函數(shù).【題目點(diǎn)撥】本題第一問考查對(duì)數(shù)的運(yùn)算,第二問考查函數(shù)奇偶的判斷,屬于中檔題.18、(1)見解析;(2)見解析.【解題分析】
(1)推導(dǎo)出,從而平面,進(jìn)而,再由,,得是正方形,由此能證明平面.取的中點(diǎn)F,連BF、推導(dǎo)出四邊形BMNF是平行四邊形,從而,由此能證明平面.【題目詳解】證明:在直三棱柱中,側(cè)面底面ABC,且側(cè)面底面,,即,平面,平面,,,是正方形,,平面取的中點(diǎn)F,連BF、在中,N、F是中點(diǎn),,,又,,,,故四邊形BMNF是平行四邊形,,而面,平面,平面【題目點(diǎn)撥】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.19、【解題分析】
利用誘導(dǎo)公式進(jìn)行化簡,即可得到答案.【題目詳解】原式.【題目點(diǎn)撥】本題考查誘導(dǎo)公式的應(yīng)用,考查運(yùn)算求解能力,求解時(shí)注意奇變偶不變,符號(hào)看象限這一口訣的應(yīng)用.20、(1);遞增區(qū)間為;(2)【解題分析】
(1)由圖可知其函數(shù)的周期滿足,從而求得,進(jìn)而求得,再代入點(diǎn)的坐標(biāo)可得值,從而求得解析式;解不等式,可得函數(shù)的單調(diào)增區(qū)間;(2)由題意可得,結(jié)合,得到,利用平方關(guān)系,求得,之后利用差角余弦公式求得結(jié)果.【題目詳解】(1)設(shè)函數(shù)的周期為,由圖可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的遞增區(qū)間為;(2),又,∴,∴;∴.【題目點(diǎn)撥】該題考查的是有關(guān)三角函數(shù)的問題,涉及到的知識(shí)點(diǎn)有根據(jù)圖象確定函數(shù)解析式,求正弦型函數(shù)的單調(diào)區(qū)間,同角三角函數(shù)關(guān)系式,利用整體角思維,結(jié)合差角正弦公式求三角函數(shù)值,屬于簡單題目
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025車輛抵債合同書
- 2025煉化工程建設(shè)總承包合同
- 2025油漆工程承包合同
- 2024-2025學(xué)年新教材高中語文 第七單元 16.2 登泰山記說課稿(1)部編版必修上冊
- 2024-2025學(xué)年高中地理 第1章 旅游和旅游資源 第2節(jié) 旅游資源的類型說課稿 中圖版選修3
- 二手房交易時(shí)合同范例
- 飲料公司組建方案
- 《 負(fù)數(shù)》(說課稿)-2023-2024學(xué)年六年級(jí)下冊數(shù)學(xué)人教版
- 石材礦山起料方案
- 鑄造企業(yè)整治方案制定
- 2024年廣東省公務(wù)員考試《行測》真題及答案解析
- 上海市2024年中考化學(xué)真題(含答案)
- 油氣儲(chǔ)運(yùn)節(jié)能優(yōu)化方案
- 物流公司員工守則以及管理制度
- 2024人形機(jī)器人產(chǎn)業(yè)半年研究報(bào)告
- 購買演唱會(huì)門票的合同模板
- 燃燒爆炸理論及應(yīng)用 課件 第1-3章 緒論、燃燒及其災(zāi)害、物質(zhì)的燃燒
- 事業(yè)單位網(wǎng)絡(luò)安全知識(shí)培訓(xùn)
- 2024年山東省第三屆中小學(xué)生海洋知識(shí)競賽試題及答案(初中組)
- 2024年山東省春季高考技能考試汽車專業(yè)試題庫-上(單選題匯總)
- 《活著》讀書分享課件
評(píng)論
0/150
提交評(píng)論