2024屆江蘇省常州市前黃中學(xué)溧陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第1頁
2024屆江蘇省常州市前黃中學(xué)溧陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第2頁
2024屆江蘇省常州市前黃中學(xué)溧陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第3頁
2024屆江蘇省常州市前黃中學(xué)溧陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第4頁
2024屆江蘇省常州市前黃中學(xué)溧陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省常州市前黃中學(xué)溧陽中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若關(guān)于x,y的方程組無解,則()A. B. C.2 D.2.在三棱錐中,平面,,,點(diǎn)M為內(nèi)切圓的圓心,若,則三棱錐的外接球的表面積為()A. B. C. D.3.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.4.?dāng)?shù)列中,若,則下列命題中真命題個數(shù)是()(1)若數(shù)列為常數(shù)數(shù)列,則;(2)若,數(shù)列都是單調(diào)遞增數(shù)列;(3)若,任取中的項(xiàng)構(gòu)成數(shù)列的子數(shù)(),則都是單調(diào)數(shù)列.A.個 B.個 C.個 D.個5.截一個幾何體,各個截面都是圓面,則這個幾何體一定是()A.圓柱 B.圓錐 C.球 D.圓臺6.已知,,當(dāng)時,不等式恒成立,則的取值范圍是A. B. C. D.7.如果,且,那么下列不等式成立的是()A. B. C. D.8.設(shè),且,則的最小值為()A. B. C. D.9.已知向量,,且,,,則一定共線的三點(diǎn)是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D10.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在公差為的等差數(shù)列中,有性質(zhì):,根據(jù)上述性質(zhì),相應(yīng)地在公比為等比數(shù)列中,有性質(zhì):____________.12.已知,為銳角,且,則__________.13.已知向量,且,則_______.14.已知函數(shù)的部分圖象如圖所示,則的單調(diào)增區(qū)間是______.15.現(xiàn)用一半徑為,面積為的扇形鐵皮制作一個無蓋的圓錐形容器(假定銜接部分及鐵皮厚度忽略不計(jì),且無損耗),則該容器的容積為__________.16.已知數(shù)列中,且當(dāng)時,則數(shù)列的前項(xiàng)和=__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列的前n項(xiàng)和為,滿足,,.(1)若,求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的通項(xiàng)公式;18.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,,求的值.19.在中,內(nèi)角,,的對邊分別為,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面積為,求的值.20.某工廠要制造A種電子裝置45臺,B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個和6個,求兩種薄鋼板各用多少張,才能使總的面積最?。?1.設(shè)數(shù)列的前n項(xiàng)和為,已知.(Ⅰ)求通項(xiàng);(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】

由題可知直線與平行,再根據(jù)平行公式求解即可.【題目詳解】由題,直線與平行,故.故選:A【題目點(diǎn)撥】本題主要考查了二元一次方程組與直線間的位置關(guān)系,屬于基礎(chǔ)題.2、C【解題分析】

求三棱錐的外接球的表面積即求球的半徑,則球心到底面的距離為,根據(jù)正切和MA的長求PA,再和MA的長即可通過勾股定理求出球半徑R,則表面積.【題目詳解】取BC的中點(diǎn)E,連接AE(圖略).因?yàn)?,所以點(diǎn)M在AE上,因?yàn)椋?,所以,則的面積為,解得,所以.因?yàn)椋?設(shè)的外接圓的半徑為r,則,解得.因?yàn)槠矫鍭BC,所以三棱錐的外接球的半徑為,故三棱錐P-ABC的外接球的表面積為.【題目點(diǎn)撥】此題關(guān)鍵點(diǎn)通過題干信息畫出圖像,平面ABC和底面的內(nèi)切圓圓心確定球心的位置,根據(jù)幾何關(guān)系求解即可,屬于三棱錐求外接球半徑基礎(chǔ)題目.3、D【解題分析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選4、C【解題分析】

對(1),由數(shù)列為常數(shù)數(shù)列,則,解方程可得的值;對(2),由函數(shù),,求得導(dǎo)數(shù)和極值,可判斷單調(diào)性;對(3),由,判斷奇偶性和單調(diào)性,結(jié)合正弦函數(shù)的單調(diào)性,即可得到結(jié)論.【題目詳解】數(shù)列中,若,,,(1)若數(shù)列為常數(shù)數(shù)列,則,解得或,故(1)不正確;(2)若,,,由函數(shù),,,由,可得極值點(diǎn)唯一且為,極值為,由,可得,則,即有.由于,,由正弦函數(shù)的單調(diào)性,可得,則數(shù)列都是單調(diào)遞增數(shù)列,故(2)正確;(3)若,任取中的9項(xiàng),,,,,構(gòu)成數(shù)列的子數(shù)列,,2,,9,是單調(diào)遞增數(shù)列;由,可得,為奇函數(shù);當(dāng)時,,時,;當(dāng)時,;時,,運(yùn)用正弦函數(shù)的單調(diào)性可得或時,數(shù)列單調(diào)遞增;或時,數(shù)列單調(diào)遞減.所以數(shù)列都是單調(diào)數(shù)列,故(3)正確;故選:C.【題目點(diǎn)撥】本題考查數(shù)列的單調(diào)性的判斷和運(yùn)用,考查正弦函數(shù)的單調(diào)性,以及分類討論思想方法,屬于難題.5、C【解題分析】

試題分析:圓柱截面可能是矩形;圓錐截面可能是三角形;圓臺截面可能是梯形,該幾何體顯然是球,故選C.6、B【解題分析】

根據(jù)為定值,那么乘以后值不變,由基本不等式可消去x,y后,對得到的不等式因式分解,即可解得m的值.【題目詳解】因?yàn)?,,,所?因?yàn)椴坏仁胶愠闪?,所以,整理得,解得,?【題目點(diǎn)撥】本題考查基本不等式,由為定值和已知不等式相乘來構(gòu)造基本不等式,最后含有根式的因式分解也是解題關(guān)鍵.7、D【解題分析】

由,且,可得.再利用不等式的基本性質(zhì)即可得出,.【題目詳解】,且,.,,因此.故選:.【題目點(diǎn)撥】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.8、D【解題分析】

本題首先可將轉(zhuǎn)化為,然后將其化簡為,最后利用基本不等式即可得出結(jié)果.【題目詳解】,當(dāng)且僅當(dāng),即時成立,故選D.【題目點(diǎn)撥】本題考查利用基本不等式求最值,基本不等式公式為,考查化歸與轉(zhuǎn)化思想,是簡單題.9、A【解題分析】

根據(jù)向量共線定理進(jìn)行判斷即可.【題目詳解】因?yàn)?,且,有公共點(diǎn)B,所以A,B,D三點(diǎn)共線.故選:A.【題目點(diǎn)撥】本題考查了用向量共線定理證明三點(diǎn)共線問題,屬于常考題.10、B【解題分析】

通過成等比數(shù)列,可以列出一個等式,根據(jù)等差數(shù)列的性質(zhì),可以把該等式變成關(guān)于的方程,解這個方程即可.【題目詳解】因?yàn)槌傻缺葦?shù)列,所以有,又因?yàn)槭枪顬?的等差數(shù)列,所以有,故本題選B.【題目點(diǎn)撥】本題考查了等比中項(xiàng)的性質(zhì),考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)題中條件,類比等差數(shù)列的性質(zhì),可直接得出結(jié)果.【題目詳解】因?yàn)樵诠顬榈牡炔顢?shù)列中,有性質(zhì):,類比等差數(shù)列的性質(zhì),可得:在公比為等比數(shù)列中,故答案為:【題目點(diǎn)撥】本題主要考查類比推理,只需根據(jù)題中條件,結(jié)合等差數(shù)列與等比數(shù)列的特征,即可得出結(jié)果,屬于??碱}型.12、【解題分析】

由題意求得,再利用兩角和的正切公式求得的值,可得的值.【題目詳解】,為銳角,且,即,.再結(jié)合,則,故答案為.【題目點(diǎn)撥】本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.13、【解題分析】

先由向量共線,求出,再由向量模的坐標(biāo)表示,即可得出結(jié)果.【題目詳解】因?yàn)椋?,所以,解得,所以,因?故答案為【題目點(diǎn)撥】本題主要考查求向量的模,熟記向量共線的坐標(biāo)表示,以及向量模的坐標(biāo)表示即可,屬于基礎(chǔ)題型.14、(區(qū)間端點(diǎn)開閉均可)【解題分析】

由已知函數(shù)圖象求得,進(jìn)一步得到,再由五點(diǎn)作圖的第二點(diǎn)求得,則得到函數(shù)的解析式,然后利用復(fù)合函數(shù)的單調(diào)性求出的單調(diào)增區(qū)間.【題目詳解】由圖可知,,則,.又,.則.由,,解得,.的單調(diào)增區(qū)間是.【題目點(diǎn)撥】本題主要考查由函數(shù)的部分圖象求函數(shù)解析式以及復(fù)合函數(shù)單調(diào)區(qū)間的求法.15、【解題分析】分析:由圓錐的幾何特征,現(xiàn)用一半徑為,面積為的扇形鐵皮制作一個無蓋的圓錐形容器,則圓錐的底面周長等于扇形的弧長,圓錐的母線長等于扇形的半徑,由此計(jì)算出圓錐的高,代入圓錐體積公式,即可求出答案.解析:設(shè)鐵皮扇形的半徑和弧長分別為R、l,圓錐形容器的高和底面半徑分別為h、r,則由題意得R=10,由,得,由得.由可得.該容器的容積為.故答案為.點(diǎn)睛:涉及弧長和扇形面積的計(jì)算時,可用的公式有角度表示和弧度表示兩種,其中弧度表示的公式結(jié)構(gòu)簡單,易記好用,在使用前,應(yīng)將圓心角用弧度表示.16、【解題分析】

先利用累乘法計(jì)算,再通過裂項(xiàng)求和計(jì)算.【題目詳解】,數(shù)列的前項(xiàng)和故答案為:【題目點(diǎn)撥】本題考查了累乘法,裂項(xiàng)求和,屬于數(shù)列的??碱}型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】

(1)根據(jù)遞推公式,得到,累加即可計(jì)算出的結(jié)果;(2)分類討論:為奇數(shù)、為偶數(shù),然后在求和時分奇偶項(xiàng)分別求和即可得到對應(yīng)的的通項(xiàng)公式.【題目詳解】(1)因?yàn)?,所以,所以上式疊加可得:,所以,又因?yàn)闀r符合的情況,所以;(2)因?yàn)椋?,所以,所以,又因?yàn)?,所以,所以,因?yàn)椋?,?dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,所以.【題目點(diǎn)撥】本題考查數(shù)列的綜合應(yīng)用,難度較難.(1)利用遞推公式求解數(shù)列通項(xiàng)公式時,對于的情況,一定要注意驗(yàn)證是否滿足時的通項(xiàng)公式,此處決定數(shù)列通項(xiàng)公式是否需要分段書寫;(2)對于奇偶項(xiàng)分別成等差數(shù)列的數(shù)列,可以分奇偶討論數(shù)列的通項(xiàng)公式.18、(1)(2),【解題分析】

(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【題目詳解】(1)由題意知,由正弦定理可得,因?yàn)椋瑒t,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【題目點(diǎn)撥】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三角形的正弦、余弦定理,準(zhǔn)確計(jì)算是解答的掛念,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.19、(Ⅰ);(Ⅱ)【解題分析】

(Ⅰ)利用,化簡得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面積公式得,得到,再利用,即可求解.【題目詳解】(Ⅰ)由題意知,即,由正弦定理,得,①,由余弦定理,得,又因?yàn)?,所以.(Ⅱ)因?yàn)椋?,由面積公式得,即.由①得,故,即.【題目點(diǎn)撥】本題考查正弦和余弦定理的應(yīng)用,屬于基礎(chǔ)題.20、甲、乙兩種薄鋼板各5張,能保證制造A、B的兩種外殼的用量,同時又能使用料總面積最?。窘忸}分析】

本題可先將甲種薄鋼板設(shè)為x張,乙種薄鋼板設(shè)為y張,然后根據(jù)題意,得出兩個不等式關(guān)系,也就是3x+6y≥45、5x+6y≥55以及薄鋼板的總面積是z=2x+3y,然后通過線性規(guī)劃畫出圖像并求出總面積z=2x+3y的最小值,最后得出結(jié)果.【題目詳解】設(shè)甲種薄鋼板x張,乙種薄鋼板y張,則可做A種產(chǎn)品外殼3x+6y個,B種產(chǎn)品外殼5x+6y個,由題意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄鋼板的總面積是可行域的陰影部分如圖所示,其中l(wèi)1:3x+6y=45、l2:因目標(biāo)函數(shù)z=2x+3y在可行域上的最小值在區(qū)域邊界的A5此時z的最小值為2×5+3×5=25即甲、乙兩種薄鋼板各5張,能保證制造A、【題目點(diǎn)撥】(1)利用線性規(guī)劃求目標(biāo)函數(shù)最值的步驟①作圖:畫出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平面直角坐標(biāo)系中的任意一條直線l;②平移:將l平行移動,以確定最優(yōu)解所對應(yīng)的點(diǎn)的位置.有時需要進(jìn)行目標(biāo)函數(shù)l和可行域邊界的斜率的大小比較;③求值:解有關(guān)方程組求出最優(yōu)解的坐標(biāo),再代入目標(biāo)函數(shù),求出目標(biāo)函數(shù)的最值.(2)用線性規(guī)劃解題時要注意z的幾何意義.21、(Ⅰ);(Ⅱ).【解題分析】試題分析:(Ⅰ)當(dāng)時,根據(jù),構(gòu)造,利用,兩式相減得到,然后驗(yàn)證,得到數(shù)列的通項(xiàng)公式;(Ⅱ)由上一問可知.根據(jù)零點(diǎn)分和討論去絕對值,利用分組轉(zhuǎn)化求數(shù)列的和.試題解析:(Ⅰ)因?yàn)椋援?dāng)時,,兩式相減得:當(dāng)時,,因?yàn)?得到,解得,,所以數(shù)列是首項(xiàng),公比為5的等比數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論