版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
德陽市重點(diǎn)中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.對數(shù)列,若區(qū)間滿足下列條件:①;②,則稱為區(qū)間套.下列選項(xiàng)中,可以構(gòu)成區(qū)間套的數(shù)列是()A.;B.C.D.2.設(shè),則下列結(jié)論正確的是()A. B. C. D.3.在中,,則是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形4.已知數(shù)列{an}滿足a1=2A.2 B.-3 C.-125.已知函數(shù)()的最小正周期為,則該函數(shù)的圖象()A.關(guān)于直線對稱 B.關(guān)于直線對稱C.關(guān)于點(diǎn)對稱 D.關(guān)于點(diǎn)對稱6.下列大小關(guān)系正確的是()A.B.C.D.7.在天氣預(yù)報(bào)中,有“降水概率預(yù)報(bào)”,例如預(yù)報(bào)“明天降水的概率為”,這是指()A.明天該地區(qū)有的地方降水,有的地方不降水B.明天該地區(qū)有的時(shí)間降水,其他時(shí)間不降水C.明天該地區(qū)降水的可能性為D.氣象臺(tái)的專家中有的人認(rèn)為會(huì)降水,另外有的專家認(rèn)為不降水8.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為()A.-12 B.-14 C.10 D.89.設(shè)滿足約束條件,則的最大值為()A.7 B.6 C.5 D.310.長方體中的8個(gè)頂點(diǎn)都在同一球面上,,,,則該球的表面積為().A. B. C.50 D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在區(qū)間上的值域?yàn)開_____.12.據(jù)監(jiān)測,在海濱某城市附近的海面有一臺(tái)風(fēng),臺(tái)風(fēng)中心位于城市的南偏東30°方向,距離城市的海面處,并以的速度向北偏西60°方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長為_______小時(shí).13.,則f(f(2))的值為____________.14.設(shè),若用含的形式表示,則________.15.在平面直角坐標(biāo)系中,為原點(diǎn),,動(dòng)點(diǎn)滿足,則的最大值是.16.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若,且對任意的,恒成立,求實(shí)數(shù)的取值范圍;(2)求,解關(guān)于的不等式.18.如圖,在四棱柱中,側(cè)棱底面,,,,,且點(diǎn)和分別為和的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(diǎn),若直線和平面所成角的正弦值為,求線段的長.19.在中,角A,B,C所對的邊分別為a,b,c,.(1)求角B;(2)若,求周長的取值范圍.20.已知圓以原點(diǎn)為圓心且與直線相切.(1)求圓的方程;(2)若直線與圓交于、兩點(diǎn),過、兩點(diǎn)分別作直線的垂線交軸于、兩點(diǎn),求線段的長.21.在平面直角坐標(biāo)系中,已知.(1)求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】由題意,得為遞增數(shù)列,為遞減數(shù)列,且當(dāng)時(shí),;而與與均為遞減數(shù)列,所以排除A,B,D,故選C.考點(diǎn):新定義題目.2、B【解題分析】
利用不等式的性質(zhì),即可求解,得到答案.【題目詳解】由題意知,根據(jù)不等式的性質(zhì),兩邊同乘,可得成立.故選:B.【題目點(diǎn)撥】本題主要考查了不等式的性質(zhì)及其應(yīng)用,其中解答中熟記不等式的基本性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、D【解題分析】
先由可得,然后利用與三角函數(shù)的和差公式可推出,從而得到是直角三角形【題目詳解】因?yàn)?,所以所以因?yàn)樗约此运砸驗(yàn)?,所以因?yàn)椋?,即是直角三角形故選:D【題目點(diǎn)撥】要判斷三角形的形狀,應(yīng)圍繞三角形的邊角關(guān)系進(jìn)行思考,主要有以下兩條途徑:①角化邊:把已知條件轉(zhuǎn)化為只含邊的關(guān)系,通過因式分解、配方等得到邊的對應(yīng)關(guān)系,從而判斷三角形形狀,②邊化角:把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角恒等變換,得出內(nèi)角的關(guān)系,從而判斷三角形的形狀.4、D【解題分析】
先通過列舉找到數(shù)列的周期,再利用數(shù)列的周期求值.【題目詳解】由題得a2所以數(shù)列的周期為4,所以a2020故選:D【題目點(diǎn)撥】本題主要考查遞推數(shù)列和數(shù)列的周期,意在考查學(xué)生對這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.5、D【解題分析】∵函數(shù)()的最小正周期為,∴,,令,,,,顯然A,B錯(cuò)誤;令,可得:,,顯然時(shí),D正確故選D6、C【解題分析】試題分析:因?yàn)椋?,,所以。故選C??键c(diǎn):不等式的性質(zhì)點(diǎn)評:對于指數(shù)函數(shù)和對數(shù)函數(shù),若,則函數(shù)都為增函數(shù);若,則函數(shù)都為減函數(shù)。7、C【解題分析】
預(yù)報(bào)“明天降水的概率為”,屬于隨機(jī)事件,可能下雨,也可能不下雨,即可得到答案.【題目詳解】由題意,天氣預(yù)報(bào)中,有“降水概率預(yù)報(bào)”,例如預(yù)報(bào)“明天降水的概率為”,這是指明天下雨的可能性是,故選C.【題目點(diǎn)撥】本題主要考查了隨機(jī)事件的概念及其概率,其中正確理解隨機(jī)事件的概率的概念是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、A【解題分析】
由直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【題目詳解】∵直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,垂足為(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案為:A【題目點(diǎn)撥】本題考查實(shí)數(shù)值的求法,考查直線與直線垂直的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.9、A【解題分析】
考點(diǎn):簡單線性規(guī)劃.專題:計(jì)算題.分析:首先作出可行域,再作出直線l0:y=-3x,將l0平移與可行域有公共點(diǎn),直線y=-3x+z在y軸上的截距最大時(shí),z有最大值,求出此時(shí)直線y=-3x+z經(jīng)過的可行域內(nèi)的點(diǎn)A的坐標(biāo),代入z=3x+y中即可.解:如圖,作出可行域,作出直線l0:y=-3x,將l0平移至過點(diǎn)A(3,-2)處時(shí),函數(shù)z=3x+y有最大值1.故選A.點(diǎn)評:本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合思想.解答的步驟是有兩種方法:一種是:畫出可行域畫法,標(biāo)明函數(shù)幾何意義,得出最優(yōu)解.另一種方法是:由約束條件畫出可行域,求出可行域各個(gè)角點(diǎn)的坐標(biāo),將坐標(biāo)逐一代入目標(biāo)函數(shù),驗(yàn)證,求出最優(yōu)解.10、C【解題分析】
根據(jù)長方體的外接球性質(zhì)及球的表面積公式,化簡即可得解.【題目詳解】根據(jù)長方體的外接球直徑為體對角線長,則,所以,則由球的表面積公式可得,故選:C.【題目點(diǎn)撥】本題考查了長方體外接球的性質(zhì)及球表面積公式應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【題目詳解】,,則,.故答案為:.【題目點(diǎn)撥】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.12、1【解題分析】
設(shè)臺(tái)風(fēng)移動(dòng)M處的時(shí)間為th,則|PM|=20t,利用余弦定理求得AM,而該城市受臺(tái)風(fēng)侵襲等價(jià)于AM≤60,解此不等式可得.【題目詳解】如圖:設(shè)臺(tái)風(fēng)移動(dòng)M處的時(shí)間為th,則|PM|=20t,依題意可得,在三角形APM中,由余弦定理可得:依題意該城市受臺(tái)風(fēng)侵襲等價(jià)于AM≤60,即AM2≤602,化簡得:,所以該城市受臺(tái)風(fēng)侵襲的時(shí)間為6﹣1=1小時(shí).故答案為:1.【題目點(diǎn)撥】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.13、1【解題分析】
先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【題目詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【題目點(diǎn)撥】本題考查分段函數(shù)求值,考查對應(yīng)性以及基本求解能力.14、【解題分析】
兩邊取以5為底的對數(shù),可得,化簡可得,根據(jù)對數(shù)運(yùn)算即可求出結(jié)果.【題目詳解】因?yàn)樗詢蛇吶∫?為底的對數(shù),可得,即,所以,,故填.【題目點(diǎn)撥】本題主要考查了對數(shù)的運(yùn)算法則,屬于中檔題.15、【解題分析】
試題分析:設(shè),表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點(diǎn):1.圓的標(biāo)準(zhǔn)方程;2.向量模的運(yùn)算16、【解題分析】
利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【題目詳解】由扇形的弧長、半徑以及圓心角之間的關(guān)系可知,該扇形的圓心角大小為.故答案為:.【題目點(diǎn)撥】本題考查扇形圓心角的計(jì)算,解題時(shí)要熟悉扇形的弧長、半徑以及圓心角之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解題分析】
(1)由題意,若,則函數(shù)關(guān)于對稱,根據(jù)二次函數(shù)對稱性,可求,代入化簡得在上恒成立,由,知當(dāng)為最小值,根據(jù)恒成立思想,令最小值,即可求解;(2)根據(jù)題意,由,化簡一元二次不等式為,討論參數(shù)范圍,寫出解集即可.【題目詳解】解:(1)若,所以函數(shù)對稱軸,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式變?yōu)椋驗(yàn)?,所?所以當(dāng),即時(shí),解為;當(dāng)時(shí),解集為;當(dāng),即時(shí),解為綜上,當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為必;當(dāng)時(shí),不等式的解隼為【題目點(diǎn)撥】本題考查(1)函數(shù)恒成立問題;(2)含參一元二次不等式的解法;考查計(jì)算能力,考查分類討論思想,屬于中等題型.18、(1)證明見解析;(2);(3)【解題分析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,依題意可得,又因?yàn)榉謩e為和的中點(diǎn),得.(Ⅰ)證明:依題意,可得為平面的一個(gè)法向量,,由此可得,,又因?yàn)橹本€平面,所以平面(Ⅱ),設(shè)為平面的法向量,則,即,不妨設(shè),可得,設(shè)為平面的一個(gè)法向量,則,又,得,不妨設(shè),可得因此有,于是,所以二面角的正弦值為.(Ⅲ)依題意,可設(shè),其中,則,從而,又為平面的一個(gè)法向量,由已知得,整理得,又因?yàn)?,解得,所以線段的長為.考點(diǎn):直線和平面平行和垂直的判定與性質(zhì),二面角、直線與平面所成的角,空間向量的應(yīng)用.19、(1);(2)【解題分析】
(1)根據(jù)輔助角公式和的范圍,得到的值;(2)利用余弦定理和基本不等式,得到的范圍,結(jié)合三角形三邊關(guān)系,從而得到周長的取值范圍.【題目詳解】(1)因?yàn)?,所以,即,因?yàn)椋?,所以,所以;?)在中,由余弦定理得由基本不等式可知,又,所以解得,根據(jù)三角形三邊關(guān)系得,即,故所以周長的范圍為.【題目點(diǎn)撥】本題考查輔助角公式,余弦定理解三角形,基本不等式求最值,三角形三邊關(guān)系,屬于中檔題.20、(1);(2).【解題分析】
(1)計(jì)算原點(diǎn)到直線的距離,作為圓的半徑,從而可得出圓的方程;(2)計(jì)算出圓心到直線的距離,利用勾股定理可計(jì)算出,過點(diǎn)作,垂足為,求出直線的傾斜角為,再利用銳角三角函數(shù)的定義可求出.【題目詳解】(1)把直線化為一般式,即,到直線的距離為,圓的半徑為,圓的方程為;(2)直線的一般方程為,點(diǎn)到直線的距離為,圓的半徑為,則,過點(diǎn)作,垂足為,.又的傾斜角為,,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鋼結(jié)構(gòu)廠房設(shè)計(jì)與施工一體化合同示范
- 2025年度外籍務(wù)工人員雇傭與管理協(xié)議
- 2025年度二零二五年度特色食堂品牌授權(quán)轉(zhuǎn)讓合同
- 二零二五年度虛擬偶像產(chǎn)業(yè)股權(quán)投資合同
- 2025年度股份制企業(yè)股份回購合同樣本
- 二零二五年度公共區(qū)域花卉租擺與維護(hù)協(xié)議
- 二零二五年度貨車司機(jī)駕駛技能提升合同
- 二零二五年獵聘人才委托合同(互聯(lián)網(wǎng)安全專家)
- 2025年度緊急救援貨物設(shè)備采購協(xié)議
- 二零二五年度駕校安全員安全監(jiān)督及隱患排查合同
- 人才交流中心聘用合同模板
- 騰訊云人工智能工程師認(rèn)證考試題(附答案)
- 廣東省廣州市天河區(qū)2023-2024學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版)
- 鋼構(gòu)樓板合同范例
- 2024-2025學(xué)年人教版(2024)信息技術(shù)四年級上冊 第11課 嘀嘀嗒嗒的秘密 說課稿
- 2024中考物理真題匯編:電與磁(含解析)
- 物流管理概論 課件全套 王皓 第1-10章 物流與物流管理的基礎(chǔ)知識(shí) - 物流系統(tǒng)
- 蘇教版六年級上冊分?jǐn)?shù)四則混合運(yùn)算100題帶答案
- 醫(yī)療組長競聘
- 全過程造價(jià)咨詢項(xiàng)目保密及廉政執(zhí)業(yè)措施
- 2024年業(yè)績換取股權(quán)的協(xié)議書模板
評論
0/150
提交評論