版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省長治市太行中學2024屆高一數(shù)學第二學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)變量滿足約束條件,則目標函數(shù)的最大值為()A.3 B.4 C.18 D.402.在各項均為正數(shù)的等比數(shù)列中,公比,若,,,數(shù)列的前項和為,則取最大值時,的值為()A. B. C. D.或3.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能4.下列函數(shù)中,在區(qū)間上為增函數(shù)的是A. B.C. D.5.已知向量,若,則()A. B. C. D.6.若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個7.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}8.設(shè),則下列不等式恒成立的是A. B.C. D.9.下列函數(shù)中,圖象的一部分如圖所示的是()A. B.C. D.10.函數(shù)的部分圖像如圖所示,則的值為()A.1 B.4 C.6 D.7二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量為單位向量,向量,且,則向量的夾角為__________.12.已知數(shù)列{an}的前n項和Sn=2n-3,則數(shù)列{an}的通項公式為________.13.方程組對應(yīng)的增廣矩陣為__________.14.已知數(shù)列,,若該數(shù)列是減數(shù)列,則實數(shù)的取值范圍是__________.15.在正方體中,是的中點,連接、,則異面直線、所成角的正弦值為_______.16.在銳角△中,角所對應(yīng)的邊分別為,若,則角等于________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)求函數(shù)的最小正周期;(2)求函數(shù)的最小值和取得最小值時的取值.18.已知函數(shù).(1)求函數(shù)的值域和單調(diào)減區(qū)間;(2)已知為的三個內(nèi)角,且,,求的值.19.若不等式的解集為.(1)求證:;(2)求不等式的解集.20.如圖,四棱錐中,是正三角形,四邊形ABCD是矩形,且平面平面.(1)若點E是PC的中點,求證:平面BDE;(2)若點F在線段PA上,且,當三棱錐的體積為時,求實數(shù)的值.21.在中,角A,B,C的對邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】不等式所表示的平面區(qū)域如下圖所示,當所表示直線經(jīng)過點時,有最大值考點:線性規(guī)劃.2、D【解題分析】
利用等比數(shù)列的性質(zhì)求出、的值,可求出和的值,利用等比數(shù)列的通項公式可求出,由此得出,并求出數(shù)列的前項和,然后求出,利用二次函數(shù)的性質(zhì)求出當取最大值時對應(yīng)的值.【題目詳解】由題意可知,由等比數(shù)列的性質(zhì)可得,解得,所以,解得,,,則數(shù)列為等差數(shù)列,,,,因此,當或時,取最大值,故選:D.【題目點撥】本題考查等比數(shù)列的性質(zhì),同時也考查了等差數(shù)列求和以及等差數(shù)列前項和的最值,在求解時將問題轉(zhuǎn)化為二次函數(shù)的最值求解,考查方程與函數(shù)思想的應(yīng)用,屬于中等題.3、A【解題分析】
由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。绢}目詳解】∵asinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【題目點撥】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.4、A【解題分析】試題分析:對A,函數(shù)在上為增函數(shù),符合要求;對B,在上為減函數(shù),不符合題意;對C,為上的減函數(shù),不符合題意;對D,在上為減函數(shù),不符合題意.故選A.考點:函數(shù)的單調(diào)性,容易題.5、A【解題分析】
先根據(jù)向量的平行求出的值,再根據(jù)向量的加法運算求出答案.【題目詳解】向量,,
解得,
∴,
故選A.【題目點撥】本題考查了向量的平行和向量的坐標運算,屬于基礎(chǔ)題.6、C【解題分析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案.【題目詳解】∵數(shù)列{an}對任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差為2的等差數(shù)列,正確;②{an}可以是公比為2的等比數(shù)列,正確;③若{an}既是等差又是等比數(shù)列,即此時公差為0,公比為1,由①②得,③錯誤;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,當數(shù)列為:1,3,6,8,16……得{an}既不是等差也不是等比數(shù)列,故④正確;故選C.【題目點撥】本題以命題的真假判斷與應(yīng)用為載體,考查了等差,等比數(shù)列的相關(guān)內(nèi)容,屬于中檔題.7、D【解題分析】
根據(jù)并集定義計算.【題目詳解】由題意A∪B={x|-2<x<3}.故選D.【題目點撥】本題考查集合的并集運算,屬于基礎(chǔ)題.8、C【解題分析】
利用不等式的性質(zhì),合理推理,即可求解,得到答案.【題目詳解】因為,所以,所以A項不正確;因為,所以,,則,所以B不正確;因為,則,所以,又因為,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【題目點撥】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的性質(zhì),合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、D【解題分析】
設(shè)圖中對應(yīng)三角函數(shù)最小正周期為T,從圖象看出,T=,所以函數(shù)的最小正周期為π,函數(shù)應(yīng)為y=向左平移了個單位,即=,選D.10、C【解題分析】
根據(jù)是零點以及的縱坐標值,求解出的坐標值,然后進行數(shù)量積計算.【題目詳解】令,且是第一個零點,則;令,是軸右側(cè)第一個周期內(nèi)的點,所以,則;則,,則.選C.【題目點撥】本題考查正切型函數(shù)以及坐標形式下向量數(shù)量積的計算,難度較易.當已知,則有.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】因為,所以,所以,所以,則.12、【解題分析】
利用來求的通項.【題目詳解】,化簡得到,填.【題目點撥】一般地,如果知道的前項和,那么我們可利用求其通項,注意驗證時,(與有關(guān)的解析式)的值是否為,如果是,則,如果不是,則用分段函數(shù)表示.13、【解題分析】
根據(jù)增廣矩陣的概念求解即可.【題目詳解】方程組對應(yīng)的增廣矩陣為,故答案為:.【題目點撥】本題考查增廣矩陣的概念,是基礎(chǔ)題.14、【解題分析】
本題可以先通過得出的解析式,再得出的解析式,最后通過數(shù)列是遞減數(shù)列得出實數(shù)的取值范圍.【題目詳解】,因為該數(shù)列是遞減數(shù)列,所以即因為所以實數(shù)的取值范圍是.【題目點撥】本題考察的是遞減數(shù)列的性質(zhì),遞減數(shù)列的后一項減去前一項的值一定是一個負值.15、【解題分析】
作出圖形,設(shè)正方體的棱長為,取的中點,連接、,推導出,并證明出,可得出異面直線、所成的角為,并計算出、,可得出,進而得解.【題目詳解】如下圖所示,設(shè)正方體的棱長為,取的中點,連接、,為的中點,則,,且,為的中點,,,在正方體中,且,則四邊形為平行四邊形,,所以,異面直線、所成的角為,在中,,,.因此,異面直線、所成角的正弦值為.故答案為:.【題目點撥】本題考查異面直線所成角的正弦值的計算,考查計算能力,屬于中等題.16、【解題分析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應(yīng)用.【方法點晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當時,.【解題分析】
(1)利用二倍角公式將函數(shù)的解析式化簡得,再利用周期公式可得出函數(shù)的最小正周期;(2)由可得出函數(shù)的最小值和對應(yīng)的的值.【題目詳解】(1),因此,函數(shù)的最小正周期為;(2)由(1)知,當,即當時,函數(shù)取到最小值.【題目點撥】本題考查利用二倍角公式化簡,同時也考查了正弦型函數(shù)的周期和最值的求解,考查學生的化簡運算能力,屬于基礎(chǔ)題.18、(1),;(2).【解題分析】
(1)將函數(shù)化簡,利用三角函數(shù)的取值范圍的單調(diào)性得到答案.(2)通過函數(shù)計算,,再計算代入數(shù)據(jù)得到答案.【題目詳解】(1)∵且∴故所求值域為由得:所求減區(qū)間:;(2)∵是的三個內(nèi)角,,∴∴又,即又∵,∴,故,故.【題目點撥】本題考查了三角函數(shù)的最值,單調(diào)性,角度的大小,意在考查學生對于三角函數(shù)公式性質(zhì)的靈活運用.19、(1)證明見解析(2)【解題分析】
(1)由已知可得是的兩根,利用韋達定理,化簡可得結(jié)論;(2)結(jié)合(1)原不等式可化為,利用一元二次不等式的解法可得結(jié)果.【題目詳解】(1)∵不等式的解集為∴是的兩根,且∴∴,所以;(2)因為,,所以,即,又即,解集為【題目點撥】本題考查了求一元二次不等式的解法,是基礎(chǔ)題目.若,則的解集是;的解集是.20、(Ⅰ)證明見解析;(Ⅱ)【解題分析】試題分析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點E是PC的中點,則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點M,則FM⊥平面ABCD,進一步利用求得最后利用平行線分線段成比例求出λ的值試題解析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點E是PC的中點,則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE(Ⅱ)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點O,所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點M,則FM⊥平面ABCD,因為四邊形ABCD是矩形,所以BC⊥平面PAB,則△PBC為直角三角形,所以,則直角三角形△ABD的面積為,由FM∥PO得:考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積21、(1);(2)【解題分析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《機械設(shè)計基礎(chǔ)》期末考試試卷七
- 吉林藝術(shù)學院《數(shù)字空間形態(tài)設(shè)計》2021-2022學年第一學期期末試卷
- 吉林藝術(shù)學院《電腦美術(shù)3D設(shè)計》2021-2022學年第一學期期末試卷
- 2024年多臺挖機租賃合同范本
- 2024年大棚維修建設(shè)合同范本
- 駕校摩托車轉(zhuǎn)讓協(xié)議書范文范本
- 2022年北京市公務(wù)員錄用考試《行測》真題及答案解析
- (人教2024版)英語七年級上冊Unit 6.4 Section B 1a-2b 課件(新教材)
- 吉林師范大學《公司法學》2021-2022學年期末試卷
- 能源企業(yè)環(huán)保自查工作制度
- 2024年中國出版集團公司招聘筆試參考題庫含答案解析
- 學校教育促進學生的情感管理和社交技能培訓課件
- 《有趣的符號》幼兒園課件
- 城軌行車組織-聯(lián)鎖故障時的列車運行組織
- 2023年體育單招數(shù)學真題及答案
- 儲能技術(shù)在交通領(lǐng)域的應(yīng)用
- 視網(wǎng)膜動脈阻塞治療及護理
- 第五單元寫作《如何突出中心》課件(共26張)語文七年級上冊
- SHT 3425-2011 石油化工鋼制管道用盲板
- 特種設(shè)備安全風險管控清單
- 廣西檢察院聘用制書記員考試真題庫2023
評論
0/150
提交評論