商洛市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末監(jiān)測模擬試題含解析_第1頁
商洛市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末監(jiān)測模擬試題含解析_第2頁
商洛市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末監(jiān)測模擬試題含解析_第3頁
商洛市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末監(jiān)測模擬試題含解析_第4頁
商洛市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

商洛市重點中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是A. B. C. D.2.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.3.在中,為的三等分點,則()A. B. C. D.4.設(shè)向量,且,則實數(shù)的值為()A. B. C. D.5.設(shè)變量,滿足約束條件則目標(biāo)函數(shù)的最小值為()A.4 B.-5 C.-6 D.-86.的內(nèi)角的對邊分別是,若,,,則()A. B. C. D.7.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角8.四邊形,,,,則的外接圓與的內(nèi)切圓的公共弦長()A. B. C. D.9.已知中,,,點是的中點,是邊上一點,則的最小值是()A. B. C. D.10.在中,分別為角的對邊,若的面積為,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不論k為何實數(shù),直線通過一個定點,這個定點的坐標(biāo)是______.12.設(shè)函數(shù)的最小值為,則的取值范圍是___________.13.一水平位置的平面圖形的斜二測直觀圖是一個底平行于軸,底角為,兩腰和上底長均為1的等腰梯形,則這個平面圖形的面積是.14.已知,,則當(dāng)最大時,________.15.已知數(shù)列的前項和是,且,則______.(寫出兩個即可)16.在公比為q的正項等比數(shù)列{an}中,a3=9,則當(dāng)3a2+a4取得最小值時,=_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某高校在2012年的自主招生考試成績中隨機抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.組號分組頻數(shù)頻率第1組5第2組①第3組30②第4組20第5組10(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取6名學(xué)生進入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試;(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機抽取名學(xué)生接受考官進行面試,求:第組至少有一名學(xué)生被考官面試的概率.18.如圖,在四邊形中,已知,,,,設(shè).(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)19.某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:月銷售產(chǎn)品件數(shù)300400500600700次數(shù)24954把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.20.已知,,,求:的值.21.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標(biāo);(2)若方程的根為,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】試題分析:由題意,這是幾何概型問題,班車每30分鐘發(fā)出一輛,到達(dá)發(fā)車站的時間總長度為40,等車不超過10分鐘的時間長度為20,故所求概率為,選B.【考點】幾何概型【名師點睛】這是全國卷首次考查幾何概型,求解幾何概型問題的關(guān)鍵是確定“測度”,常見的測度有長度、面積、體積等.2、B【解題分析】試題分析:由正弦定理得31考點:正弦定理的應(yīng)用3、B【解題分析】試題分析:因為,所以,以點為坐標(biāo)原點,分別為軸建立直角坐標(biāo)系,設(shè),又為的三等分點所以,,所以,故選B.考點:平面向量的數(shù)量積.【一題多解】若,則,即有,為邊的三等分點,則,故選B.4、D【解題分析】

根據(jù)向量垂直時數(shù)量積為0,列方程求出m的值.【題目詳解】向量,(m+1,﹣m),當(dāng)⊥時,?0,即﹣(m+1)﹣2m=0,解得m.故選D.【題目點撥】本題考查了平面向量的數(shù)量積的坐標(biāo)運算,考查了向量垂直的條件轉(zhuǎn)化,是基礎(chǔ)題.5、D【解題分析】繪制不等式組所表示的平面區(qū)域,結(jié)合目標(biāo)函數(shù)的幾何意義可知,目標(biāo)函數(shù)在點處取得最小值.本題選擇D選項.6、B【解題分析】,所以,整理得求得或若,則三角形為等腰三角形,不滿足內(nèi)角和定理,排除.【考點定位】本題考查正弦定理和余弦定理的應(yīng)用,考查運算能力和分類討論思想.當(dāng)求出后,要及時判斷出,便于三角形的初步定型,也為排除提供了依據(jù).如果選擇支中同時給出了或,會增大出錯率.7、C【解題分析】

本題首先要明確平面直角坐標(biāo)系中每一象限所對應(yīng)的角的范圍,然后即可判斷出在哪一象限中.【題目詳解】第一象限所對應(yīng)的角為;第二象限所對應(yīng)的角為;第三象限所對應(yīng)的角為;第四象限所對應(yīng)的角為;因為,所以位于第三象限,故選C.【題目點撥】本題考查如何判斷角所在象限,能否明確每一象限所對應(yīng)的角的范圍是解決本題的關(guān)鍵,考查推理能力,是簡單題.8、C【解題分析】

以為坐標(biāo)原點,以為軸,軸建立平面直角坐標(biāo)系,求出的外接圓與的內(nèi)切圓的方程,兩圓方程相減可得公共弦所在直線方程,求出弦心距,進而可得公共弦長.【題目詳解】解:以為坐標(biāo)原點,以為軸,軸建立平面直角坐標(biāo)系,過作交于點,則,故,則為等邊三角形,故,的外接圓方程為,①的內(nèi)切圓方程為,②①-②得兩圓的公共弦所在直線方程為:,的外接圓圓心到公共弦的距離為,公共弦長為,故答案為:C.【題目點撥】本題考查兩圓公共弦長的求解,關(guān)鍵是要求出兩圓的公共弦所在直線方程,將兩圓方程作差即可得到,是中檔題.9、B【解題分析】

通過建系以及數(shù)量積的坐標(biāo)運算,從而轉(zhuǎn)化為函數(shù)的最值問題.【題目詳解】根據(jù)題意,建立圖示直角坐標(biāo)系,,,則,,,.設(shè),則,是邊上一點,當(dāng)時,取得最小值,故選.【題目點撥】本題主要考察解析法在向量中的應(yīng)用,將平面向量的數(shù)量積轉(zhuǎn)化成了函數(shù)的最值問題.10、B【解題分析】試題分析:由已知條件及三角形面積計算公式得由余弦定理得考點:考查三角形面積計算公式及余弦定理.二、填空題:本大題共6小題,每小題5分,共30分。11、(2,3)【解題分析】

將直線方程變形為,它表示過兩直線和的交點的直線系,解方程組,得上述直線恒過定點,故答案為.【方法點睛】本題主要考查待定直線過定點問題.屬于中檔題.探索曲線過定點的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關(guān).12、.【解題分析】

確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【題目詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【題目點撥】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,13、【解題分析】如圖過點作,,則四邊形是一個內(nèi)角為45°的平行四邊形且,中,,則對應(yīng)可得四邊形是矩形且,是直角三角形,.所以14、【解題分析】

根據(jù)正切的和角公式,將用的函數(shù)表示出來,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【題目詳解】故可得則當(dāng)且僅當(dāng),即時,此時有故答案為:.【題目點撥】本題考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.15、或【解題分析】

利用已知求的公式,即可算出結(jié)果.【題目詳解】(1)當(dāng),得,∴,∴.(2)當(dāng)時,,兩式作差得,,化簡得,∴或,即(常數(shù))或,當(dāng)(常數(shù))時,數(shù)列是以1為首項,2為公差的等差數(shù)列,所以;當(dāng)時,數(shù)列是以1為首項,﹣1為公比的等比數(shù)列,所以.【題目點撥】本題主要考查利用與的關(guān)系公式,即,求的方法應(yīng)用.16、【解題分析】

利用等比數(shù)列的性質(zhì),結(jié)合基本不等式等號成立的條件,求得公比,由此求得的值.【題目詳解】∵在公比為q的正項等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質(zhì)和基本不等式得,當(dāng)且僅當(dāng),即,即q時,3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【題目點撥】本小題主要考查等比數(shù)列的性質(zhì),考查基本不等式的運用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)人,,直方圖見解析;(2)人、人、人;(3).【解題分析】

(1)由頻率分布直方圖能求出第組的頻數(shù),第組的頻率,從而完成頻率分布直方圖.(2)根據(jù)第組的頻數(shù)計算頻率,利用各層的比例,能求出第組分別抽取進入第二輪面試的人數(shù).(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,利用列舉法能出所有基本事件及滿足條件的基本事件的個數(shù),利用古典概型求得概率.【題目詳解】(1)①由題可知,第2組的頻數(shù)為人,②第組的頻率為,頻率分布直方圖如圖所示,

(2)因為第組共有名學(xué)生,所以利用分層抽樣在名學(xué)生中抽取名學(xué)生進入第二輪面試,每組抽取的人數(shù)分別為:第組:人,第組:人,第組:人,所以第組分別抽取人、人、人進入第二輪面試.(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,則從這六位同學(xué)中抽取兩位同學(xué)有種選法,分別為:,,,,,,,,,,,,,,,其中第組的位同學(xué)中至少有一位同學(xué)入選的有種,分別為:,,,∴第組至少有一名學(xué)生被考官面試的概率為.【題目點撥】本題考查頻率分直方圖、分層抽樣的應(yīng)用,考查概率的求法,考查數(shù)據(jù)處理能力、運算求解能力,是基礎(chǔ)題.18、(1);(2)米【解題分析】

(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達(dá)式;(2)在中,由正弦定理,求得,進而可得到,利用三角函數(shù)的性質(zhì),即可求解.【題目詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當(dāng)時,取得最小值最小值約為米.【題目點撥】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.19、(1);(2)方案一概率為,方案二概率為.【解題分析】

(1)利用一次函數(shù)和分段函數(shù)分別表示方案一、方案二的月工資與的關(guān)系式;(2)分別計算方案一、方案二的推銷員的月工資超過11090元的概率值.【題目詳解】解:(1)方案一:,;方案二:月工資為,所以.(2)方案一中推銷員的月工資超過11090元,則,解得,所以方案一中推銷員的月工資超過11090元的概率為;方案二中推銷員的月工資超過11090元,則,解得,所以方案二中推銷員的月工資超過11090元的概率為.【題目點撥】本題考查了分段函數(shù)與應(yīng)用問題,也考查了利用頻率估計概率的應(yīng)用問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于基礎(chǔ)題.20、【解題分析】

求出和的取值范圍,利用同角三角函數(shù)的基本關(guān)系求出和的值,然后利用兩角差的余弦公式可求出的值.【題目詳解】,則,且,,,,,,,因此,.故答案為:.【題目點撥】本題考查利用兩角差的余弦公式求值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論