2024屆河南省濟源四中數(shù)學高一下期末經典試題含解析_第1頁
2024屆河南省濟源四中數(shù)學高一下期末經典試題含解析_第2頁
2024屆河南省濟源四中數(shù)學高一下期末經典試題含解析_第3頁
2024屆河南省濟源四中數(shù)學高一下期末經典試題含解析_第4頁
2024屆河南省濟源四中數(shù)學高一下期末經典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省濟源四中數(shù)學高一下期末經典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若某扇形的弧長為,圓心角為,則該扇形的半徑是()A. B. C. D.2.直線的斜率是()A. B.13 C.0 D.3.下列向量組中,能作為表示它們所在平面內的所有向量的基底的是()A., B.,C., D.,4.等差數(shù)列的前項和為.若,則()A. B. C. D.5.棱長都是1的三棱錐的表面積為()A. B. C. D.6.為了得到的圖象,只需將的圖象()A.向右平移 B.向左平移 C.向右平移 D.向左平移7.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.28.設集合,,若存在實數(shù)t,使得,則實數(shù)的取值范圍是()A. B. C. D.9.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC10.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知棱長都相等正四棱錐的側面積為,則該正四棱錐內切球的表面積為________.12.記為等差數(shù)列的前項和,若,則___________.13.圓上的點到直線4x+3y-12=0的距離的最小值是14.函數(shù)的定義域是_____.15.某單位有200名職工,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1-200編號,并按編號順序平均分為40組(1-5號,6-10號…,196-200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是16.在等腰中,為底邊的中點,為的中點,直線與邊交于點,若,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.記為等差數(shù)列的前項和,已知,.(Ⅰ)求的通項公式;(Ⅱ)求,并求的最小值.18.在平面直角坐標系xOy中,已知圓,三個點,B、C均在圓上,(1)求該圓的圓心的坐標;(2)若,求直線BC的方程;(3)設點滿足四邊形TABC是平行四邊形,求實數(shù)t的取值范圍.19.銳角的內角、、所對的邊分別為、、,若.(1)求;(2)若,,求的周長.20.設函數(shù).(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實數(shù)的取值范圍.21.的內角,,的對邊分別為,,,設.(1)求;(2)若,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由扇形的弧長公式列方程得解.【題目詳解】設扇形的半徑是,由扇形的弧長公式得:,解得:故選D【題目點撥】本題主要考查了扇形的弧長公式,考查了方程思想,屬于基礎題.2、A【解題分析】

由題得即得直線的斜率得解.【題目詳解】由題得,所以直線的斜率為.故選:A【題目點撥】本題主要考查直線的斜率的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、B【解題分析】

以作為基底的向量需要是不共線的向量,可以從向量的坐標發(fā)現(xiàn),,選項中的兩個向量均共線,得到正確結果是.【題目詳解】解:可以作為基底的向量需要是不共線的向量,中一個向量是零向量,兩個向量共線,不合要求中兩個向量是,,則故與不共線,故正確;中兩個向量是,兩個向量共線,項中的兩個向量是,兩個向量共線,故選:.【題目點撥】本題考查平面中兩向量的關系,屬于基礎題.4、D【解題分析】

根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結果.【題目詳解】由等差數(shù)列性質知:,,,成等差數(shù)列,即:本題正確選項:【題目點撥】本題考查等差數(shù)列片段和性質的應用,關鍵是根據(jù)片段和成等差數(shù)列得到項之間的關系,屬于基礎題.5、A【解題分析】

三棱錐的表面積為四個邊長為1的等邊三角形的面積和,故,故選A.6、B【解題分析】

先利用誘導公式將函數(shù)化成正弦函數(shù)的形式,再根據(jù)平移變換,即可得答案.【題目詳解】∵,∵,∴只需將的圖象向左平移可得.故選:B.【題目點撥】本題考查誘導公式、三角函數(shù)的平移變換,考查邏輯推理能力和運算求解能力,求解時注意平移是針對自變量而言的.7、B【解題分析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【題目詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【題目點撥】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.8、C【解題分析】

得到圓心距與半徑和差關系得到答案.【題目詳解】圓心距存在實數(shù)t,使得故答案選C【題目點撥】本題考查了兩圓的位置關系,意在考查學生的計算能力.9、C【解題分析】

根據(jù)線面垂直的性質及判定,可判斷ABC選項,由面面垂直的判定可判斷D.【題目詳解】對于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質可知,且,則平面PAC.所以A正確;對于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯誤.對于D,由A、B可知,平面PAC,平面,由面面垂直的性質可得平面平面PBC.所以D正確;綜上可知,C為錯誤選項.故選:C.【題目點撥】本題考查了線面垂直的性質及判定,面面垂直的判定定理,屬于基礎題.10、D【解題分析】

過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)側面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內切球的半徑,于是可得內切球的表面積.【題目詳解】設正四棱錐的棱長為,則,解得.于是該正四棱錐內切球的大圓是如圖△PMN的內切圓,其中,.∴.設內切圓的半徑為,由∽,得,即,解得,∴內切球的表面積為.【題目點撥】與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.12、100【解題分析】

根據(jù)題意可求出首項和公差,進而求得結果.【題目詳解】得【題目點撥】本題考點為等差數(shù)列的求和,為基礎題目,利用基本量思想解題即可,充分記牢等差數(shù)列的求和公式是解題的關鍵.13、【解題分析】

計算出圓心到直線的距離,減去半徑,求得圓上的點到直線的最小距離.【題目詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【題目點撥】本小題主要考查圓上的點到直線距離最小值的求法,考查點到直線距離公式,屬于基礎題.14、.【解題分析】

由題意得到關于x的不等式,解不等式可得函數(shù)的定義域.【題目詳解】由已知得,即解得,故函數(shù)的定義域為.【題目點撥】求函數(shù)的定義域,其實質就是以函數(shù)解析式有意義為準則,列出不等式或不等式組,然后求出它們的解集即可.15、1【解題分析】試題分析:因為將全體職工隨機按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,因為第5組抽出的號碼為22,所以第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為1.考點:系統(tǒng)抽樣.點評:本題考查系統(tǒng)抽樣,在系統(tǒng)抽樣過程中得到的樣本號碼是最規(guī)則的一組編號.16、;【解題分析】

題中已知等腰中,為底邊的中點,不妨于為軸,垂直平分線為軸建立直角坐標系,這樣,我們能求出點坐標,根據(jù)直線與求出交點,求向量的數(shù)量積即可.【題目詳解】如上圖,建立直角坐標系,我們可以得出直線,聯(lián)立方程求出,,即填寫【題目點撥】本題中因為已知底邊及高的長度,所有我們建立直角坐標系,求出相應點坐標,而作為F點的坐標我們可以通過直線交點求出,把向量數(shù)量積通過向量坐標運算來的更加直觀.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2),最小值為?1.【解題分析】

(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質,可得Sn的最小值.【題目詳解】(I)設的公差為d,由題意得.由得d=2.所以的通項公式為.(II)由(I)得.所以當n=4時,取得最小值,最小值為?1.【題目點撥】本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項的和公式,考查了等差數(shù)列前n項和的最值問題;求等差數(shù)列前n項和的最值有兩種方法:①函數(shù)法,②鄰項變號法.18、(1)(2)或(3),【解題分析】

(1)將點代入圓的方程可得的值,繼而求出半徑和圓心(2)可設直線方程為:,可得圓心到直線的距離,結合弦心距定理可得的值,求出直線方程(3)設,,,,因為平行四邊形的對角線互相平分,得,,于是點既在圓上,又在圓上,從而圓與圓上有公共點,即可求解.【題目詳解】(1)將代入圓得,解得,.半徑.(2),,且,設直線,即,圓心到直線的距離,由勾股定理得,,,,或,所以直線的方程為或.(3)設,,,,因為平行四邊形的對角線互相平分,所以①,因為點在圓上,所以②將①代入②,得,于是點既在圓上,又在圓上,從而圓與圓有公共點,所以,解得.因此,實數(shù)的取值范圍是,.【題目點撥】本題考查了直線與圓的關系,涉及了向量知識,弦心距公式,點到直線的距離公式等內容,綜合性較強,難度較大.19、(1);(2).【解題分析】

(1)利用正弦定理邊角互化思想,結合兩角和的正弦公式可計算出的值,結合為銳角,可得出角的值;(2)利用三角形的面積公式可求出,利用余弦定理得出,由此可得出的周長.【題目詳解】(1)依據(jù)題設條件的特點,由正弦定理,得,有,從而,解得,為銳角,因此,;(2),故,由余弦定理,即,,,故的周長為.【題目點撥】本題考查正弦定理邊角互化思想的應用,同時也考查余弦定理和三角形面積公式解三角形,要熟悉正弦定理和余弦定理解三角形所適用的基本類型,同時在解題時充分利用邊角互化思想,可以簡化計算,考查運算求解能力,屬于中等題.20、(1)(2)①9,②【解題分析】

(1)根據(jù)不等式的端點值是對應方程的實數(shù)根,利用根與系數(shù)的關系,得到的值;(2)①根據(jù)求的最值,可利用求最值;②利用二次函數(shù)恒成立問題求解.【題目詳解】由已知可知,的兩根是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論